ВЛИЯНИЕ ФАЗОВОГО СОСТАВА НАНОСТРУКТУРНЫХ ДОБАВОК НА СТРУКТУРУ И СВОЙСТВА КЕРАМИКИ НА ОСНОВЕ ОКСИДА АЛЮМИНИЯ

Шевченок А.А.¹, Долгий В.К.¹, Барайшук С.М.¹, Ульянова Т.М.², Кашаед Е.А.³

¹ Белорусский государственный аграрный технический университет ¹ пр-т Независимости, 99,к.1. 220023, г. Минск, Беларусь ²Институт общей и неорганической химии НАН Беларуси ² ул. Сурганова, 9/1, 220072, г. Минск, Беларусь, ³Институт порошковой металлургии НАН Беларуси,

³ ул.Платонова, 41, 220060, г.Минск, Беларусь e-mail: alexshev56@mail.ru

Аннотация. В работе исследовано влияние высокодисперсных наноструктурных модификаторов оксидов алюминия - магния, на процессы консолидации композиционной керамики из промышленных порошков оксида алюминия, термообработанной при температуре 1600-1700°С, изменения ее микроструктуры и физико-механических свойств. Установлено, что за счет процессов самодиффузии активных модификаторов происходит распределение их нанозерен по границам микрочастиц порошка оксида алюминия, а также заполнение порового пространства, что вызывает скольжение частиц при механических и тепловых нагрузках материала и переводит механизм хрупкого разрушения в псевдопластичный. Введенные наноструктурные модификаторы обеспечивают процесс образования пластинчатых зон в объеме материала, что также упрочняет его механические свойства. Разработаны составы композиционной керамики с повышенными физико-механическими характеристиками.

Ключевые слова: композиционная керамика, оксид алюминия, наноструктурные модификаторы Al₂O₃-MgO, микроструктура, физико-механические свойства.

Введение

Оксид алюминия является одним из широко используемых керамических материалов. Керамика из оксида алюминия обладает высокой прочностью, которая сохраняется при высоких температурах, химической стойкостью, твердостью, большим электросопротивлением [1]. Изделия из него имеют промышленное применение во многих областях техники: резцы, используемые при больших скоростях резания, калибры, фильеры для протяжки стальной и цветной проволоки, стеклянных и синтетических нитей, детали высокотемпературных печей, подшипники печных конвейеров, детали насосов, свечи зажигания в двигателях внутреннего сгорания. Керамику с плотной структурой используют в качестве вакуумной, а пористую - как термоизоляционный и фильтрующий материал. В корундовых тиглях проводят плавление различных металлов, оксидов, шлаков, применяют при легировании металлов методом сверхбыстрой закалки из расплава [2].

Однако термическая стойкость корунда невысокая, он обладает повышенной хрупкостью. Кроме того, при использовании промышленных порошков корунда и традиционных технологий изделия имеют крупнозернистую структуру с неравномерно распределенными по объему зернами, что ухудшает их эксплуатационные характеристики. Для создания более совершенной структуры и повышения механических характеристик материала используют два основных приема: введение в порошок различных упрочняющих добавок или применения новых, нередко сложных, технологий консолидации керамики. Так, например, исследователи в работах [3, 4] достигли повышения трещиностойкости материала за счет введения в него нанодисперсных частиц карбида кремния или добавкой 5 об. % вискерсов SiC, электроимпульсного плазменного спекания [5], а также комбинацией легирования и физического воздействия [6].

Следует учитывать, что введение углеродсодержащих компонентов в керамику ограничивают ее использование на воздухе при высоких температурах, поскольку может происходить окисление карбида кремния и выгорание углерода. В связи с чем, нами был использован прием введения в промышленный корундовый порошок добавок волокнистых наноструктурных порошков оксида алюминия, содержащего 0,5 мол. % оксида магния двух кристаллических структур: θ- и α- Al₂O₃. Целью исследования было изучить влияние указанных добавок на микроструктуру композиционной корундовой керамики и ее физико-механические характеристики.

Объекты исследования и эксперимент

Для приготовления образцов использовали белый электрокорунд микрошлифпорошок зернистости M1 марки 25 A (ТУ 3988-005-00658716-2000), производства ОАО «РУСАЛ Бокситогорск». Размер зерен основной фракции микрошлифпорошка M1- 1 мкм и менее (50 %). Массовая доля α -Al₂O₃ – 99,0 %, SiO₂ – 0,54 %, Na₂O – 0,20 %. Модифицирующими компонентами были наноструктурные порошки Al₂O₃, содержащие 0,5 мол. % MgO. Наноструктурные оксидные наполнители синтезировали по методике, разработанной в ИОНХ НАН Беларуси [7]. Волокнистые порошки представляли собой иглообразные частицы длиной 0,5-1,0 мкм с кристаллической структурой θ -Al₂O₃, размер частиц равнялся 45,0-50,0 нм. В зависимости от типа кристаллической структуры порошков их пористость изменялась от 85 до 55 %, а удельная поверхность от 200

до 40 м²/г, размер нанопор составлял 5-10 нм. Синтезированные наполнители обладали высокой адсорбционной способностью и реакционной активностью.

Соотношение в смеси исходного порошка M1 и наполнителей изменялось от 99:1 до 80: 20 мас. %. Смеси порошков размалывались в планетарной мельнице (марки «Санд») в течение 30 минут. Затем их сушили, рассевали по фракциям и методом одноосного статического прессования формовали заготовки, которые отжигали по заданному режиму в диапазоне температур 1550 – 1700 °C. У полученных керамических образцов исследовали микроструктуру, а также определяли плотность, пористость, влагопоглощение, микротвердость, прочность при сжатии и изгибе. Исследования порошков и керамики проводили с помощью методов физико-химического анализа. Структуру образцов изучали методами рентгенофазового и рентгеноструктурного анализа (ДРОН 3) в *СиКа* монохроматизированном излучении, расчет размеров кристаллитов оксида алюминия различной структуры выполнялся по формуле Шеррера. Микроскопе "Mira" фирмы "Tescan" (Чехия) в режиме отраженных электронов при ускоряющем напряжении 20 кВ.Погрешность определения геометрических размеров методом СЭМ составляла 5 %. Наноструктуру порошков изучали методом просвечивающей электронной микроскопии (микроскоп JSM – 200А при ускоряющем напряжении 200 кВ с увеличением 100000 – 120000 крат).

Свойства волокнистых порошков: насыпную и пикнометрическую плотности определяли по ГОСТ 27801 – 93 и ГОСТ 24409 – 80, удельную поверхность по методу БЭТ (анализатор поверхности и пористости ASAP 2020 фирмы Micromeritics, (США). Кажущуюся, пикнометрическую плотность и открытую пористость отожженных керамических образцов определяли методом гидростатического взвешивания по ГОСТ 24409-80, а микротвердость спеченной керамики определяли с помощью твердомера «Micromet» (Швейцария) при нагрузке 0,5 и 1,0 Н. По данным микротвердости рассчитывали критический коэффициент вязкости разрушения керамических композитов K_{1C} . Прочность при сжатии и изгибе выполняли на универсальной испытательной машине Instron 1195 и TiniusOlsen(Великобритания) при усилии нагружения 50 кГ, со скоростью 1 мм/мин, погрешность измерения составляла 1 %.

Обсуждение результатов

В процессе помола смеси промышленных и наноструктурных вискерсов происходило не только равномерное распределение микро- и наночастиц между макропорами и промежуткам микрочастиц и агломератов промышленного порошка М1, но и активирование поверхности его частиц. По сравнению с исходным корундовым порошком М1 удельная поверхность порошковых смесей с наноструктурными добавками после помола взрастала в 1,5 -2,5 раза.

При формовании из порошковых смесей получались компактные заготовки, а после спекания – плотный керамический материал. В процессе термообработки частицы порошка спекались, при этом усадка образцов из промышленного порошка M1 после их отжига при 1700 °C составляла 15,2 % по диаметру и 14,8 % - по высоте. При введении θ -Al₂O₃ волокнистых порошков усадка керамических образцов несколько увеличивалась с повышением содержания наполнителя от 15,5 до 17,1 % по диаметру и от 15,0 до 15,7 % - по высоте. В случае использования в качестве модификатора α -Al₂O₃ волокнистых порошков усадка образцов практически не отличалась от данных при консолидации чистого порошка M1.

При помоле порошков и формовании заготовок кристаллическая структура исходного материала Al₂O₃ (M1) сохранялась, но после спекания при температурах 1600-1700 °C на дифрактограммах образцов, содержащих наноструктурные добавки, наблюдалась инверсия интегральных интенсивностей рефлексов кристаллической решетки корунда, что, возможно, обусловлено текстурированием керамического материала или искажением его кристаллической решетки Al₂O₃ (рисунок 1).

Рисунок 1 – Рентгенограммы образцов керамики после отжига при 1600 °C из смесей порошков: а - М1 с добавкой 15 % θ-Al₂O₃ волокнистых порошков и б - М1 с добавкой 15 % α-Al₂O₃ волокнистых порошков; на рентгенограммахнаблюдается инверсия интегральной интенсивности рефлексов α-Al₂O₃ при углах 20:66,5 и 68,2°35 - а; 35,01 и 57,4 ° - б

Рентгеновские данные подтверждаются электронно-микроскопическими исследованиями сколов отожженных образцов. Микроструктура керамики из промышленного порошка представляла собой спаянные по границам крупные частицы пластинчато-осколочной формы с крупными порами. Образцы керамики с добавкой α-Al₂O₃ волокнистых порошков характеризовались образованием однонаправленных «колоний» правильных пластинок оксида алюминия. Активные наночастицы вызывали в керамическом материале процесс рекристаллизации α-Al₂O₃ и организовывали внутреннее упрочнение материала (рисунок 2).

Рисунок 2 – Микроструктура спеченной керамики из порошков: а - М1, б - М1 с добавкой θ-Al₂O₃ волокнистых порошков, в - М1 с добавкой α-Al₂O₃ волокнистых порошков

Введенные наполнители оказывали влияние не только на микроструктуру, но и на физико-механические свойства. Причем, их влияние было различным: с увеличением содержания θ - Al₂O₃ прочностные характеристики имели параболическую зависимость, при добавке α -Al₂O₃ – прямопропорциональную. Введение модификатора со структурой α -фазы повышало, как механические свойства, так и пластичность материала, сопротивление деформации возрастало от 7 % (M1) до 19 % (M1+10 % α -Al₂O₃). Эта закономерность сохранялась при введении активного наполнителя до 10 мас. %, повышение его содержания до 15 мас. % вызывало некоторое понижение прочности при сжатии, но увеличивало прочностные показатели при изгибе. Физико-механические свойства керамики из промышленного корунда M1 и композиционных порошков с наноструктурными наполнителями представлены в таблице 1. Введение наноструктурных наполнителей повышало пластичность и прочность материала при сжатии. Этот факт подтверждается деформационными кривыми при нагружении материала (рисунок 3). В целом, с повышением содержания активного наполнителя пластичность (коэффициент сопротивления деформации) возрастает: кривые 5, 7, 8. Однако, добавка α -Al₂O₃ волокнистых порошков выше 12-15 % вызывает увеличение пористости материала и в меньшей мере способствует его упрочнению.

Таблица 1	Физико-механические свойства керамических материалов

Состав материала	Кажущаяся плотность р, цилиндры, г/см ³	Открытая пористост ь П, %	Влагопогл ощение W, %	Микротв ердость, Нv, ГПа	Прочность при сжатии б _{сж} , цилиндры, МПа	Кажущаяся плотность р, балки г/см ³	Прочность при изгибе
M1	3,76	0,2	0,04	16,1	1003	4,02	169,3
M1 +1 % θ-Al ₂ O ₃	3,75	0,2	0,04	16,0	771	3,75	193,1
M1 +5 % θ-Al ₂ O ₃	3,69	0,4	0,11	16,1	1033	3,60	216,1
M1 +10 % θ-Al ₂ O ₃	3,74	0,3	0,07	14,1	817	3,85	210,7
M1 +15 % θ-Al ₂ O ₃	3,71	0,2	0,05	15,5	1005	3,72	203,5
M1 +1 % α-Al ₂ O ₃	3,78	0,35	0,09	17,1	992	3,70	176,4
M1 +5 % α-Al ₂ O ₃	3,85	0,2	0,05	16,8	1363	3,84	211,8
M1 +10 % α-Al ₂ O ₃	3,90	0,1	0,03	16,7	1462	3,74	219,6
M1 +15 % α-Al ₂ O ₃	3,80	0,3	0,08	16,4	1350	3,78	248,3

Рисунок 3 – Деформационные кривые при сжатии образцов керамики из порошка корунда с наноструктурными наполнителями: 1 - без наполнения; с добавкой θ- Al₂O₃ (мас. %): 1мас. % – 2; 5мас. % - 3; 10мас. % - 4; 15мас. % - 5 и с добавкой α- Al₂O₃ (мас. %): 1мас.% - 6; 5мас. % - 7; 10мас. % - 8; 15мас. % - 9

Таким образом, высокоактивные наноструктурные наполнители выполняют в композиционной керамике роль модификаторов микроструктуры материала и повышают их эксплуатационные характеристики. Полученные зависимости позволяют формировать структуру корундовой керамики, придавать материалу нужные свойства и прогнозировать технологию изготовления высокопрочного керамического материала.

Литература:

1. Абызов А.М. Оксид алюминия и алюмооксидная керамика (Обзор). Часть 1. Свойства Al2O3 и промышленное производство дисперсного Al2O3. Новые огнеупоры. 2019;(1):16-23.

2. Tashlykova-Bushkevich I.I., Gut'ko E.S., Shepelevich V.G., Baraishuk S.M. Structural and phase analysis of rapidly solidified Al-Fe alloys. *Surface Investigation*. *X-ray, Synchrotron and Neutron Techniques*, 2008. – vol. 2, N_{\odot} . 2. – pp. 310–316.

3. Morsi K., Keshavan H., Bal S. Hot pressing of graded ultrafine-grained alumina bioceramics. *Materials Science and Engineering*, 2004, vol. 386, is. 1-2, pp. 384-389.

4. WuH., RobertsS., DerbyB. Ductiledeformationinalumina/siliconcarbidenanocompositesJ. Ceram. Soc. Jpn. 1991, vol.99, pp. 974-982.

5. Болдин М.С., Сахаров Н.В., Шотин С.В., Чувильдеев В.Н., Нохрин А.В., Котков Д.Н., Писклов А.В. Композиционные керамики на основе оксида алюминия, полученные методом электроимпульсного плазменного спекания для трибологических применений. ВестникНижегородскогоун-таим. Н.И. Лобачевского, 2012, № 6, (1). с. 32-37.

6. Chakravarty D. Sundararajan G. Microstructurc, mechanical properties and machining performance of spark plasma sintered A1₂0₃-Zr₀-TiCN nanocomposites // *Journal of the European Ceramic Society*, 2013. -vol. 33. - pp. 2597-2607.

7. Ульянова Т.М., Крутько Н.П., Титова Л.В. Процессы формирования и твердофазного взаимодействия оксидов в наноструктурных волокнах и порошках. Сборник научных статей «Наноструктуры в конденсированных средах», Минск, 2011, с. 67-72.

INFLUENCE OF THE PHASE COMPOSITION OF NANOSTRUCTURAL ADDITIVES ON THE STRUCTURE AND PROPERTIES OF CERAMICS ON THE BASIS OF ALUMINIUM OXIDE

Shevchenok A.A.¹, Dolgiy V.K.¹, Barayshuk S.M.¹, Ulyanova T.M.², Kashaed E.A.³

¹ Belarusian State Agrarian Technical University,

¹99 Nezavisimosti Avenue. 220023, Minsk, Belarus

²Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus

² 9/1 Surganov str., 220072 Minsk, Belarus,

³Powder Metallurgy Institute of the National Academy of Sciences of Belarus

³41Platonov str. 220060 Minsk, Belarus

email: alexshev56@mail.ru

Abstract. Influence of high-disperse nanostructured modifiers of alumina - magnesia on processes of consolidation of the composite ceramics of industrial alumina oxide powders annealed at the temperature 1600-1700°C, changes of its microstructure and physical-mechanical properties are investigated. It is

вастополь 179

established, that due to processes of self-diffusion of active modifiers there is a distribution of their nanograins on borders of microparticles of alumina oxide powder. In addition, nanostructured modifiers fill a pore space that causes sliding of particles at mechanical and thermal loads of material and transfers the mechanism of fragile destruction to pseudo-plastic. The entered nanostructured modifiers promote process of lamellar zones formation in volume of material that also strengthens its mechanical properties. The correlation of composite ceramics structure and their physical-mechanical characteristics are developed. **Keywords:** composite ceramics, aluminium oxide, nanostructured modifiers of alumina – magnesia, microstructure, physical-mechanical properties.