МИКРОСТРУКТУРА ТОНКОПЛЕНОЧНЫХ МЕДЬСОДЕРЖАЩИХ ХАЛЬКОГЕНИДНЫХ ПОЛУПРОВОДНИКОВЫХ МАТЕРИАЛОВ, ИСПОЛЬЗУЕМЫХ ДЛЯ СОЗДАНИЯ СОЛНЕЧНЫХ ФОТОПРЕОБРАЗОВАТЕЛЕЙ

 Барайшук С. М.¹, Бобрович О. Г.², Туравец А. И.³, Михалкович О. М.³, Вертель М.⁴, Будзинский М.⁴
¹Белорусский государственный аграрный технический университет пр-т. Независимости 99, г. Минск, 220023, Республика Беларусь
²Белорусский государственный технологический университет ул. Свердлова, 13а, г. Минск, 220006, Республика Беларусь
³Белорусский Государственный педагогический университет имени Максима Танка ул. Советская 18, г. Минск, 220050, Республика Беларусь
⁴Институт физики Университета М. Кюри-Склодовской пл. М. Кюри-Склодовской 1, Люблин, 20-031, Польша e-mail: bear s@rambler.ru

Аннотация. Представлены результаты исследования методом атомно-силовой микроскопии в сочетании со сканирующей электронной микроскопией влияния типа подложки (стеклянная подложка с подслоем молибдена, фольги из Мо) на морфологию поверхности тонких пленок Cu₂ZnSnSe₄, полученных электрохимическим осаждением с последующей селенизацией. Обнаружено, что время и температура селенизации оказывают влияние на морфологию и шероховатость поверхности пленок CZTSe. Установлена возможность получения пленок CZTSe на подложке из Мо-фольги со структурными свойствами, аналогичными свойствам пленок CZTSe на подложке стекло/Мо, путем варьирования времени и температуры селенизации. Показано, что морфология металлических подложек оказывает незначительное влияние на морфологию поверхности пленок Cu₂ZnSnSe₄, что указывает на перспективность использования гибких металлических подложек в производстве тонкопленочных солнечных элементов.

Ключевые слова: тонкие пленки CZTSe, электроосаждение, селенизация, прекурсоры, гибкие металлические подложки, структуры Мо/стекло, морфология, атомно-силовая микроскопия, сканирующая электронная микроскопия.

Фотопреобразователи на гибких подложках являются перспективными ввиду их малого веса, высокой удельной мощности и гибким возможностям монтажа [1]. Данные преимущества позволяют расширить возможности применения гибких солнечных элементов на наземных (интеграция на неровные поверхности, автомобильное применение, использование в виде фасадных решений, портативная электроника и др.) и на космических объектах. Кроме того, гибкие солнечные элементы позволяют использовать рулонную технологию, что значительно упрощает производство и уменьшает издержки. Одним из наиболее перспективных функциональных соединений является четырехкомпонентное полупроводниковое соединение Cu₂ZnSnSe₄ (CZTSe). Это перспективный материал для тонкопленочных солнечных элементов, благодаря соответствующей ширине запрещенной зоны (1.0 эВ), высокому коэффициенту поглощения излучения в видимом диапазоне (более 10^4 см⁻¹) и проводимости р-типа [2, 3]. CZTSe содержит широко распространенные дешевые и нетоксичные компоненты. Эффективность фотоэлектрического преобразования для солнечных элементов на основе данного материала составляет 6,1 % [4] на гибких металлических подложках. Необходимо отметить, что эффективность в 6,1 % была достигнута солнечными элементами на основе пленок CZTSe, полученных с помощью двухстадийной методики, включающей осаждение прекурсоров и последующую термическую обработку. Двухстадийные методы получения пленок привлекают большой интерес, поскольку данные методы помогают снизить издержки производства и могут обеспечить более высокую производимость.

Так как эффективность солнечных элементов на гибких металлических подложках на несколько процентов ниже, чем на стеклянных, необходимо изучать микроструктуру и топографию поверхности подложек как один из основных факторов повышения эффективности солнечных элементов [5, 6].

Целью настоящей работы было выявление закономерностей влияния типа подложки (стеклянная подложка с подслоем молибдена (Мо/стекло), фольга из Мо), а так же времени и температуры селенизации на морфологию поверхности тонких пленок CZTSe, полученных на этих подложках.

Экспериментальная часть

Покрытия на основе Мо наносились на стекло методом осаждения покрытия ассистированного собственными ионами с использованием резонансного ионного источника вакуумной электродуговой плазмы. Ускоряющее напряжение составляло 10 кВ, плотностью тока jcp = $5,1 \text{ мкA/см}^2$, облучение прекращалось при достижении интегральных потоков ионов $1,2\cdot10^{16}$, $3,2\cdot10^{16}$, $5,2\cdot10^{16}$, $8,1\cdot10^{16}$, $1,1\cdot10^{17}$ ион/см². Вакуум в мишенной камере в области держателя образцов составлял $1\cdot10^{-2}$ Па.

Расчеты плотности энергии, выделенной в каскадах атомных столкновений (θ), формирующихся при торможении ассистирующих ионов в осаждаемой пленке, выполнены в соответствии с методикой, предложенной Р. Sigmund [7]. Получено, что $\theta = 0,25-0,42$ эВ/ат. Такие значения θ соответствуют температурному эквиваленту ~ 10³ К. Учитывая время развития каскада атомных столкновений, при торможении ассистирующих ионов, получаем гипервысокие скорости «кристаллизации» (охлаждения каскадов) ~ 10¹²-10¹³ К/с.

Для получения пленок CZTSe использовалась методика, включающая последовательное электрохимическое осаждение металлических прекурсоров Cu-Zn-Sn на подложки стекло/Мо и Мо-фольга, предварительный отжиг прекурсоров в атмосфере 95 % Ar + 5 % H₂ при температуре 350 °C в течение 30 мин и селенизацию [8]. Селенизацию отожженных прекурсоров Cu-Zn-Sn проводили в кварцевом контейнере (объем 12,5 см³) с 13 мг порошкообразного Se при давлении газа Ar 1 бар. Температуру и время селенизации изменяли в интервале 560–580 °C и 5–30 мин.

Поверхность прекурсоров CZT и пленок CZTSe исследовали с использованием атомно-силового микроскопа NT 206 (Microtestmachines Co) в контактном режиме. Для оценки поверхности было выбрано не менее пяти площадок сканирования размером 10 × 10 мкм с разных участков поверхности, что позволило проводить усреднение параметров рельефа. Обработка изображений проводилась по методике описанной в [9]. Морфологию поверхности прекурсоров CZT и пленок CZTSe исследовали методом сканирующей электронной микроскопии (CЭM), элементный анализ состава поверхности пленок CZTSe проводили используя метод обратного энергодисперсионного рассеяния электронов с использованием электронно-зондового микроскопа типа EDX Oxford Instruments AZtecEnergy-Advanced с кремний-дрейфовым детектором X-act (активная площадь кристалла 10 мм2), работающим при комнатной температуре. Энергия первичного пучка электронов составляла 20 кэВ, детектор вторичных электронов типа Everhart-Thornley (кристалл YAG).

Результаты и обсуждение

При изучении поверхности стекла с нанесенным Мо покрытием, были получены данные о топографии и шероховатости поверхности. Топография поверхности изображена на рисунке 1, а её характеристики представлены в таблице 1.

Рисунок 1 – 3-х мерные изображения топографии поверхности стекла, модифицированного ионноассистированным нанесением Мо с интегральным потоком ионов 1,2·10¹⁶ (*a*), 3,2·10¹⁶ (*b*), 5,2·10¹⁶ (*b*), ион/см²

ионно-ассистированным нанесением мо					
Паранотри	Исходное стекло	Интегральный поток F, ·10 ¹⁶ ат/см ²			
Параметры		1,2 3,2		5,2	
R _a , нм	2,2	1,8	2,0	2,7	
Z _{mean} , H.M.	221,7	245,9	280,6	273,3	

Таблица 1 – Параметры морфологии и смачиваемости исходного стекла и стекла, модифицированного ионно-ассистированным нанесением Мо

Интересная особенность обнаружена для образцов, полученных при интегральном потоке ионов более 5,2·1016 ион/см². На поверхности встречаются редкие столбики высотой 22 нм и диаметром 0,1 мкм. Данные столбики обладают пониженным, по сравнению с нанесенным покрытием, сопротивлением механическому воздействию. Это, а также то, что условиями эксперимента было исключено осаждение крупных кластеров наносимого покрытия, позволяет нам предположить, что это столбики из стекла, переосажденные на формируемое покрытие.

На ACM снимках мы видим не поверхность подложки (более низкий уровень), а поверхность ранее осажденного покрытия. Об этом свидетельствует, в частности, снижение разности высот с 7,2 нм до 3 нм при увеличении интегрального потока и соответственно времени нанесения покрытия.

Зависимость Ra от интегрального потока (рис. 2) имеет вид схожий с ранее полученными результатами исследования влияние облучения графита ионами Xe⁺ на топографию поверхности образцов [10].

Рисунок 2- Зависимость средней шероховатости поверхности образцов от интегрального потока ионов

Рост шероховатости с увеличением интегрального потока обусловлен разностью высот покрытия и подложки, а также многочисленностью островков зарождения покрытия, достигая максимума в 2,71 нм при интегральным потоком ионов 5,2·10¹⁶ ион/см². При дальнейшем увеличении времени нанесения, а значит увеличении интегрального потока ионов, площадь покрытия растет, заполняя всю поверхность стекла, что приводит к снижению шероховатости до 2,3 нм.

Рисунок 3 – Типичные АСМ-снимки поверхности осажденных (a-e) и предварительно отожженных (z-e) прекурсоров СZT и пленок CZTSe (e-e) на подложках Мо/стекло (a, δ, e) , и фольги Мо (z, d, e)

Поверхность осажденных прекурсоров CZT на металлические подложки характеризуется сложной зеренной структурой (рис. 3*6*, *в*). На поверхности прекурсора CZT на молибденовой фольге присутствуют наноразмерные образования округлой продолговатой формы размером (50–100) × (200–400) нм, ориентированные вдоль одного направления.

Из результатов, представленных в таблице 2, видно, что подложки из фольги Мо ввиду механической обработки характеризуются большей шероховатостью, чем подложка Мо/стекло. Шероховатость поверхности прекурсоров СZT на подложке Мо/стекло увеличилась в 8–10 раз по сравнению с подложкой, что можно объяснить влиянием крупных образований на поверхности осажденного прекурсора CZT (рис. 3*a*). В то же

время для прекурсоров CZT на подложках из фольги Мо характерно увеличение шероховатости в 2–3 раза по сравнению с шероховатостью подложки. Тем не менее, значения шероховатости прекурсоров CZT на металлических подложках выше, чем на подложке Мо/стекло, что говорит о влиянии поверхности металлической подложки на формирование морфологии поверхности прекурсоров.

Морфология поверхности прекурсоров CZT на всех подложках после предварительного отжига в атмосфере аргона значительно изменилась (рис. 3*в-е*). В случае прекурсора CZT на подложке Мо / стекло размер зерен увеличился и составляет от 0,28–4 мкм, а также увеличился перепад высот, что привело к увеличению шероховатости поверхности прекурсора. Напротив, поверхность прекурсоров CZT на металлических подложках стала более однородной, и значения шероховатости по сравнению с осажденными прекурсорами CZT значительно уменьшились. Все эти результаты указывают на то, что изменение морфологии поверхности прекурсоров CZT после предварительного отжига обусловлено с одной стороны ростом зерен, а с другой - агломерацией материала.

Тип подложки	Mo/c	гекло	Мо-фольга		
Параметры	R_a , нм	R_q , нм	R_a , нм	R_q , нм	
Подложка	8,2	9,9	144,2	178,4	
Осажденный прекурсор СZТ	80,8	109,6	273,0	335,2	
Предварительно отожженный прекурсор CZT	162,6	208,5	44,9	58,5	
Пленка CZTSe	209,5	262,4	204,5	268,1	

Таблица 2 Среднеарифметическая (*R_a*) и среднеквадратичная (*R_q*) шероховатость поверхности подложек, прекурсоров и пленок

АСМ-исследования показали, что на поверхности пленок CZTSe на подложках всех типов – Мо / стекло, Мо сформирована зернистая структура. На поверхности прекурсоров CZT на подложке Мо / стекло и фольги Мо можно выделить зерна двух типов: крупные и мелкие. Для пленок CZTSe на подложке Мо / стекло характерны следующие размеры зерен: 400 × 200 и 270 × 130 нм, высота 160–194 нм. В случае пленки на фольге Мо размер зерен 6 × 7,2 и 1 × 1,1 мкм соответственно, и они приблизительно одинаковой высоты ~280 нм, что хорошо согласуется с параметрами, рассчитанными по СЭМ-изображениям (рис. 4).

Из рисунка 1*в-е* видно, что на поверхности пленок CZTSe на подложках всех типов отсутствуют трещины и микропоры, что указывает на большую компактность и однородность слоя CZTSe, обусловленных дальнейшим ростом зерен и агломерацией материала. Средний размер зерен пленок CZTSe во всех случаях имеет тенденцию к увеличению, что стало причиной роста шероховатости поверхности пленок по сравнению с прекурсорами CZT (табл. 2).

Рисунок 4 – Типичные СЭМ-изображения поверхности осажденных прекурсоров СZT на подложки Мо/стекло (*a*), Мо-фольга (*б*) и пленок CZTSe Мо/стекло (в)

Значения параметров шероховатости пленок CZTSe, осажденных на подложку Мо/стекло и металлические подложки, неожиданно мало расходятся, если учесть, что подложки из фольг изначально характеризовались более высокими значениями шероховатости и дефектами в виде царапин, а также различной морфологией поверхности прекурсоров после предварительного отжига. Поэтому морфология поверхности металлических подложек оказывает незначительное влияние на микро- и нанорельеф полупроводниковых тонких пленок, что согласуется с данными [11].

Химический состав пленок CZTSe на подложках Мо/стекло, фольги Мо (табл. 3) указывает на обогащение цинком, что отвечает критерию высокоэффективных тонкопленочных солнечных элементов на основе CZTSe [1]. В пленках CZTSe, обогащенных цинком, согласно [12] кристаллы Cu₂ZnSnSe₄ растут крупными и формируют компактный слой, оставляя избыток цинка на поверхности. Как следствие, образуются мелкие кристаллиты селенида цинка, что хорошо согласуется с данными ACM для пленок CZTSe (рис. 1*в-е*). Обогащение медью пленок CZTSe на подложках Мо/стекло и фольга Мо, по-видимому, приводит к

образованию фазы селенида меди. Так на СЭМ-изображении поверхности пленки CZTSe на молибденовой фольге (рис. 4*в*) присутствуют крупные кристаллы характерной для селенида меди формы.

Состав пленки CZTSe в среднем однородный по всей поверхности. В полученном спектре пленки CZTSe наблюдается массовое преобладание селена, а также массовое преобладание цинка по сравнению с оловом, что подтверждает расчеты химического состава пленок (табл. 3). Аналогичные спектры были получены для пленок CZTSe на подложке Mo/стекло и Mo-фольга.

гаолица 5 Химический состав пленок с215с на различных подложках								
Тип полножи	Cu		Zn		Sn		Se	
Тип подложки Ма	иас. %	ат. %	мас. %	ат. %	мас. %	ат. %	мас. %	ат. %
Мо/стекло 27	27,96	32,77	12,25	13,95	9,84	6,17	49,95	47,11
Мо-фольга 26	26,50	31,15	13,07	14,93	10,29	6,48	50,14	47,44

Таблица 3 Химический состав пленок СZ	TSe на различных подложка:
---------------------------------------	----------------------------

Заключение

Тонкие пленки CZTSe получены путем селенизации послойно электрохимически осажденных и предварительно отожженных прекурсоров CZT на подложке Мо/стекло, полученных методом ионно ассистированного осаждения покрыий в условиях облучения собственными ионами и фольг Мо. Показано, что на морфологию поверхности прекурсоров CZT оказывает влияние тип подложки, ее морфология. Предварительный отжиг осажденных прекурсоров CZT приводит к значительному изменению морфологии поверхности. Шероховатость поверхности прекурсоров CZT на подложке Мо/стекло после предварительного отжига увеличивается, а на металлических подложках, напротив, уменьшается. На поверхности пленок CZTSe во всех случаях образуется зернистая структура. Увеличение шероховатости пленок CZTSe обусловлено ростом зерен во время селенизации. Пленки CZTSe на стеклянной подложке с подслоем молибдена и на металлических фольгах имеют близкие значения шероховатостей, что говорит о возможности использования гибкой металлической фольги в качестве подложки для тонкопленочных солнечных элементов. Химический состав пленок CZTSe, определенный методом энергодисперсионной спектроскопии, не содержал посторонних элементов в пределах чувствительности метода. В целом можно говорить, что время и температура селенизации тонких пленок CZTSe оказывают влияние на их морфологию и шероховатость и как следствие на эффективность солнечного элемента.

Список литературы / References:

1. Pagliaro M., Palmisano G., Ciriminna R. *Flexible Solar Cells*. Italy: Wiley-VCH Verlag GmbH and Co.KgaA, 2008, 203 p.

2. Paranthaman M.P., Wong-Ng W., Bhattacharya R.N. Semiconductor Materials for Solar Photovoltaic Cells. *Springer International Publishing*, 2016, 25 p.

3. Green M.A., Emery K., Hishikawa Y. et al. Prog. Photovolt: Res. Appl. 2016, vol. 24, 905 p.

4. Lopez-Marino Y. et al. Alkali doping strategies for flexible and light-weight Cu2ZnSnSe4 solar cells. J. Mater. Chem. A. 2016, pp. 1–16.

5. Batchelor W.K. et al. Impact of substrate roughness on CuInxGa1-xSe2 device properties. *Solar Energy Materials and Solar Cells*, 2004, vol. 83, pp. 67–80.

6. San Vicente G. et al. The Application of Metallic Foils as Substrate for CIGS Thin Film Solar Cells. *Proc. of the 17th European Photovoltaic Solar Energy Conference,* London, 2001, pp. 638–642.

7. Mayer J.W., Rimini E. Ion beam handbook for mat. Analysis.N. Y.: Academ, 1977, 280 p.

8. Stanchik A.V. et al. Microstructure and Raman Scattering of Cu₂ZnSnSe₄ Thin Films Deposited onto Flexible Metal Substrates. *Semiconductors*, 2018, vol. 52, no 2, pp. 227–232.

9. Ташлыков И.С., Барайшук С.М. Элементный состав, топография и смачиваемость поверхности графита, модифицированного ионно-ассистированным осаждением хромовых покрытий. Известия вузов. Сер. Порошковая металлургия и функциональные покрытия, 2008, № 1, с. 30–35.

10. Туровец А.И., Ташлыков И.С., Барайшук С.М. Влияние облучения ионами Хе+ на топографию и состав поверхности графита. Сборник докладов IX Международной конференции Методологические аспекты сканирующей зондовой микроскопии, Минск, 2010, с. 80 – 84.

11. Tashlykov I.S., Baraishuk S. M. Elemental composition, topography, and wettability of the surface of graphite modified by ion-assisted deposition of chromium coatings. *Russian Journal of Non-Ferrous Metals*, 2008, vol. 49, Issue 4, pp 303–307.

12. Kondrotas R., Juskenas A., Naujokaitis A. et al. Solar En. Mater. Solar Cells., 2015, vol. 132, 21p.

Нанотехнологии в современных материалах технологического и биомедицинского назначения

MICROSTRUCTURE OF THIN-FILM COPPER CONTAINING CHALKOGENIDENE SEMICONDUCTOR MATERIALS USED FOR CREATION OF SOLAR PHOTO ELEMENTS Baraishuk S. M.¹, Bobrovich O.G.², Turovets A. I.³, Mikhalkovich O.M.³, Wiertel M.⁴, Budzynski M.⁴ ¹Belorussian State Agrarian Technical University *Nesavisimosti Av., 99, Minsk, 220023, Belarus* ²Belarusian State Technological University *Sverdlova St. 13a, Minsk, 220006, Belarus* ³Belarusian State Pedagogical Universit named after Maxim Tank *Sovetskaya St. 50, Minsk, 220050, Belarus* ⁴Institute of Physics of the University named after M. Curie-Sklodowska *Marii Curie-Sklodowskiej Pl. 5, Lublin, 20-031, Poland e-mail: bear s@rambler.ru*

Abstract. The results of an an atomic force microscopy study in combination with scanning electron microscopy study of the influence of substrate type (a glass substrate with a molybdenum sublayer, molybdenum metal foils) on the morphology of the surface of thin $Cu_2ZnSnSe_4$ films obtained by electrochemical deposition followed by selenization are presented. It was found that the time and temperature of selenization affects the morphology and surface roughness of CZTSe films. It is established that it is possible to obtain CZTSe films on a Mo-foil substrate with structural properties similar to those of CZTSe films on a glass / Mo substrate by varying the time and temperature of selenization. It is shown that the morphology of metal substrates has an insignificant effect on the morphology of the surface of Cu2ZnSnSe4 films, which indicates the promise of using flexible metal substrates in the production of thin-film solar cells. **Key words**: thin films CZTSe, electrodeposition, selenization, precursors, flexible metal foil, Mo / glass structures, morphology, atomic force microscopy, scanning electron microscopy.