КИНЕМАТИЧЕСКИЕ СООТНОШЕНИЯ ПРИ УСТАНОВИВШЕМСЯ ПОВОРОТЕ ТРАКТОРА

Г.С. ГОРИН, д.т.н.; В.М. ГОЛОВАЧ, аспирант (БГАТУ)

ракторы тяжелых тяговых классов обычно выполняют с шарнирно-сочленённой рамой, что позволяет на повороте работать с кинематически согласованным приводом передних и задних колес. Тракторы малых тяговых классов выполняют с передними управляемыми колесами. При этом, как правило, на повороте привод передних колес отключают. У новых тракторов «Беларус-1221», «Беларус-1522» и «Беларус-2522» тяжелых классов тяги 20...50кН управляемые -- передние колеса. Изучается возможность их привода на повороте путем включения ускоряющей передачи. В настоящей работе рассмотрено влияние параметров межосевого привода на показатели поворачиваемости.

В таблице приведены результаты анализа экспериментальных данных кинематики установившегося поворота трактора-установки. Эксперименты выполнены с изменением параметров кинематического несоответствия (к_v — соотношения скоростей передних и задних колес) межосевого блокированного привода (МБП) и тягового усилия Р_{кр}. Отдельные эксперименты выполнены с межосевым дифференциальным приводом (МДП). Для трактора, который движется без увода колес:

$$\kappa_{RB34}^0 = \frac{R_3^0}{R_4^0} = \frac{tg\alpha_2}{tg\alpha_1}$$

$$\kappa_{RR12}^{0} = \frac{R_{1}^{0}}{R_{2}^{0}} = \frac{R_{3}^{0}}{\cos \alpha_{1}} * \frac{\cos \alpha_{2}}{R_{4}^{0}} = \frac{\sin \alpha_{2}}{\sin \alpha_{1}}$$

Если центр скоростей совпадает с геометрическим центром O_г, кинематическое соотношение радиусов поворота колес при

 $\alpha_1 = 20^{\circ} \ \alpha_2 = 24^{\circ} \text{ составляет (табл.):}$

- для передних колес $\kappa_{RB12}^0 = 1,19$;

- для задних колес $\kappa_{RB34}^0 = 1,22;$

- - передних по отношению к задним κ_{RLB} =1,055.

В таблице применены следующие обозначения:

 λ_n – доля нагрузки на передние колеса,

 $R_{1.}$ $R_{2.}$ $R_{3.}$ R_{4} — радиусы поворота колес соответственно переднего правого, переднего левого, заднего правого, заднего левого,

 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ – углы поворота колес с соответствующими индексами, $\delta_1, \delta_2, \delta_3, \delta_4$ – буксования колес с соответствующими индексами.

При $P_{\kappa p} = 0$ реальные и геометрические соотношения для колес составляют (табл.):

- передних
$$\frac{\kappa_{RB12}}{\kappa^0} = 1,034...1,067;$$

- задних
$$\frac{\kappa_{RH34}}{\kappa_{ggal}^0} = 1,036...1,084,$$

т.е. в обоих случаях забегают внешние колеса.

$$\frac{K_{RB12}}{K_{RB12}^0} = 0,933 - \text{наступает блокировка}$$

переднего МКД.

$$\frac{K_{RB34}}{K_{RB33}^0} = 1,01, -$$
 для заднего МКД.

т.е. «тормозится» переднее внешнее колесо, что приводит к появлению

Кинематические соотношения, определяемые работой межколесного дифференциала (МКД) при повороте трактора установки $\frac{1}{2} = 0.4$, $\alpha = 20^{\circ}$ $\alpha = -24^{\circ}$ $\alpha = -20^{\circ}$

$\lambda_{11} = 0.4$, $\alpha_1 = 20$, $\alpha_2 = 24$, $\alpha_3 = \alpha_4 = 0$						
	$P_{KP}=0$			$P_{KP} \neq 0$		
Показатели	1	$MEII$ $K_{t'} = 0.93$	<i>МДП</i> К ₁ . = 1,07	$MБ\Pi$ $K_{p} = 1.05$ $P_{KP} = 12\kappa H$	$MBII$ $K_{t'} = 0.93$ $P_{KP} = 8\kappa H$	$MI(II)$ $K_{I'} = 1,08$ $P_{KP} = 12,8\kappa H$
	Соотношения частот вращения колес					
$\kappa_{RB12} = \frac{R_1}{R_2} * \frac{1 - \delta_2}{1 - \delta_1}$	1,23	1,24	1,27	1,11	1,20	1,23
$\kappa_{RB34} = \frac{R_3}{R_4} * \frac{1 - \delta_4}{1 - \delta_3}$	1,3	1,26	1,32	1,24	1,23	1,29
Соотношение радиусов поворота						
$\frac{\kappa_{RB12}}{\kappa_{RB12}^0}$	1,034	1,042	1,067	0,933	1,0	1,03
$\frac{\kappa_{RB34}}{\kappa_{RB34}^0}$	1,066	1,36	1,084	1,013	1,0	1,05
Вывод				При МБП $\kappa_{RB} = \kappa_{RB}^{0}$, кроме колес i=1,2 при $\kappa_{v} = 1,05$		
	Углы увод	в с поворотом контактного отпечатка колеса				
φ_{κ}	-910°	- 34°	-14,5°	-1720°	-35°	46°

больших углов увода, связанных с поворотом контактного отпечатка колес $\phi_{\kappa_0} = 17...20^{\circ}$.

$$\frac{\kappa_{RB12}}{\kappa_{RB12}^{0}} \cdot \frac{\kappa_{RB34}}{\kappa_{RB34}^{0}} = 1.0,$$

углы увода $\varphi_{_{\kappa i}} = -3...5^{\circ}$ при этом малы:

если применён МДП к = 1,07:

$$\frac{K_{RB12}}{K_{RB12}^0} = 1,03; \quad \frac{K_{RB34}}{K_{RB34}^0} = 1,05,$$

т.е. забегают внешние колеса. Суммарные углы $\varphi_{\kappa} = -4...8^{\circ}$ меньше, чем при МБП и к = 1,05.

Уточнение известных положений теории поворота применительно к полноприводной ходовой системе сводится к учету углов увода, вызванных поворотом контактного отпечатка при срабатывании МКД. Последние связаны с Δ ω - приращением (замедлением) угловой скорости внутреннего колеса i=4 по сравнению с теоретическим.

Названный угол увода

$$\varphi_K = \frac{\pm \Delta \omega_K}{\omega_4^0 \pm \Delta \omega_K} \ .$$

Знаку (+) соответствует приращение скорости колеса i=4 (при одновременном замедлении внешнего).

Знаку (-) замедление (при одновременном ускорении внешнего).

Тогда

$$\frac{\Delta \omega_{K34}}{\omega_A^0} = \frac{\varphi_K}{1 \mp \varphi_K} \ .$$

Соотношение радиусов поворота при движении с поворотом контактного отпечатка

$$\kappa_{RB34} = \frac{R_4^0 \left(1 \pm \frac{\Delta \omega_k}{\omega_{k4}}\right) + B}{R_4^0 \left(1 \pm \frac{\Delta \omega_k}{\omega_{k4}}\right)} = 1 + \frac{B}{R_4^0 \left(1 \mp \frac{\varphi_k}{1 - \varphi_k}\right)}.$$

При $\alpha_1 = 20^\circ$, $\alpha_2 = 24^\circ$ и повороте без буксования колес трактора: - если $\phi_{\kappa i} = -20^\circ (0.35 \text{ рад})$ забегают внешние задние колёса

$$\kappa_{RB34} = 1 + \frac{1,68}{6,4(1 - \frac{0,35}{1 + 0,35})} = 1,35$$

- если забегают внутренние колеса $\varphi_{\kappa i} = +10^{\circ} (0.174 \text{ рад}) \text{ K}_{RB} > \text{K}_{RB}^{0} \text{ рас-четное соотношение (рис. 1a);}$

$$\kappa_{RB34} = 1 + \frac{1.68}{6.4(1 + \frac{0.174}{1 - 0.174})} = 1.22$$

Экспериментальные данные, следующие из таблицы адекватны расчетным:

-
$$K_{RB34} = 1,30...1,32$$
 для МБП $K_{\nu} = 1,05$ и МДП, $P_{\nu n} = 0$;

- К
$$_{RB34}$$
=1,24...1,29 для МБП и МДП Р $_{\kappa p}$ >0.

На рис. 1а представлена трактовка кинематики новорота при отставании передних и задних внешних колес одного борта (горизонтальная составляющая скорости Δ V(-) по сравнению с поворотом вокруг центра O_{I^-} , соответственно скорость внутренних передних и задних колес увеличивается на Δ V(+). Вы-

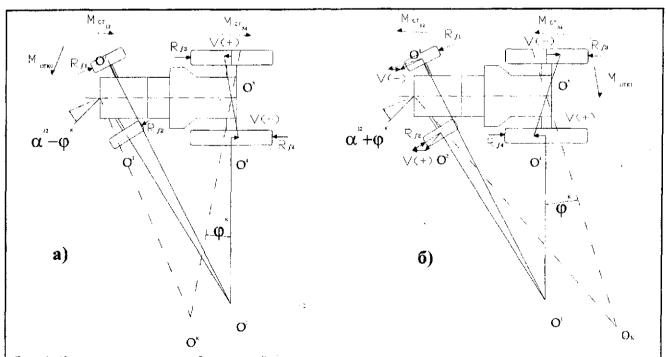


Рис. 1. Кинематика поворота без тяговой нагрузки: $a-\lambda_{\Pi}=0,6$ - забегают внутренние колёса, б- $\lambda_{\Pi}=0,4$ - забегают внешние колёса.

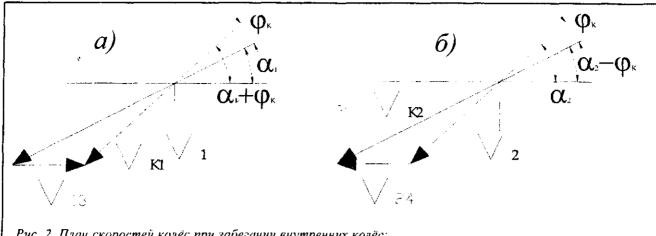


Рис. 2. План скоростей колёс при забегании внутренних колёс; а-правого борта, б-левого борта.

полним геометрическое сложение скоростей колес

$$\overline{V}_{ip} = \overline{V}_i^0 + \Delta \overline{V}.$$

Смысл дополнительных построений для нахождения угла увода φ_{κ} задних колес ясен из рис. 2а. Для нахождения кинематического центра поворота проведена линия $O_{12}O_{\kappa}$ из середины заднего моста под углом φ_{κ} к вертикали.

Далее проведены штриховые линии, перпендикулярные векторам скоростей \overline{V}_{1p} и \overline{V}_{2p} передних колсс. Точка пересечения штриховых линий $O_{34}O_{K}$ и $O_{2}O_{K}$ - кинематический центр скоростей, расположенный внутри базы трактора. Такое расположение последнего свойственно переднеприводным автомобилям и полноприводным тракторам с большой нориальной нагрузкой на передние колеса (λ_{II} =0,6). Названный перпендикуляр, проведенный из центра пятна контакта колеса i=1 не проходит через центр O_{K} , а проходит через центр пятна контакта колеса i=4.

Эксперименты показывают, что на колесо i=1 действует большая боковая сила и дополнительная тангенциальная реакция $R_{f\,I}$. Последняя и является причиной срабатывания переднего МКД.

Аналогичные построения выполнены на рис. 16 для схемы с забеганием внешних передних и задних колес. Такая схема срабатывания МКД свойственна повороту трактора с тяговой нагрузкой под действием противоположного по знаку отклоняющего момента $M_{\sigma \kappa \kappa \lambda}(-)$. При этом кинематический центр поворота O_K находится за осью задних колес на пересечении штриховых линий $O_{34}O_K$ проведенной под углом φ_{κ} к вертикали, и O_2O_K проведенной перпендикулярно вектору скорости V_{2n} . Аналогичный перпендикуляр, проведен-

ный через центр пятна контакта колеса, i=1, не проходит через центр O_{K_i} а проходит через центр пятна контакта колеса i=2.

Таким образом, в результате поворота корпуса трактора по часовой стрелке под действием отклоняющего момента $M_{\text{откл}}(\cdot)$ колесо катится вокруг центров O_F и O_2 , что приводит к образованию упора в виде ДТР R_{f1} . Особенность схемы поворота полноприводных тракторов с передними управляемыми колесами заключается в том, что на переднее внешнее колесо i=1 действуют большие ДТР R_{f1} и боковые силы.

На кинематических схемах поворота, представленных на рис. 1а, начальные положения ходовой системы показаны сплошными линиями, конечные — штриховыми.

Приращения продольных скоростей смещения колес i=3 и i=1 при повороте рамы на угол $+\varphi_{\mu}$ (рис. 2)

$$\nabla V_{13} = -\Delta \omega_k * r_k.$$

Приращение аналогичных скоростей смещения колес i=4 и i=2

$$\nabla V_{24} = \Delta \omega_k * r_k$$

Из условия неразрывности трактора

$$\nabla V_{13} = -\nabla V_{24} \,.$$

На рис. 2 приведены планы скоростей для колес правого и левого бортов при забегании внутренних колес.

Проекции названных скоростей смещения на плоскости качения колес i=1 и i=2 находятся по теореме синусов из Δ ABC

$$\frac{\Delta V_{13}}{\sin \varphi_{\kappa}} = \frac{\Delta V_{\kappa 1}}{\sin(180^{\circ} - \alpha_{1} - \varphi_{\kappa})} = \frac{\Delta V_{\kappa 1}}{\sin(\alpha_{1} + \varphi_{\kappa})}$$

$$\frac{\Delta V_{24}}{\sin \varphi_{\kappa}} = \frac{\Delta V_{\kappa 2}}{\sin(180^{\epsilon} - \alpha_2 + \varphi_{\kappa})} = \frac{\Delta V_{\kappa 1}}{\sin(\alpha_2 - \varphi_{\kappa})}$$

При
$$\alpha_1=20^\circ$$
 , $\varphi_K=10^\circ$,
$$\Delta V_{k1}=\frac{\Delta V_{13}}{0.174}*\sin 30^\circ=2,87*\Delta V_{13}\;.$$

Если $\frac{\Delta \omega_{_{K34}}}{\omega_{_{K4}}} = 0.16...0.24$, то при повороте по схеме

рис. 1а следует: $\Delta\omega_{k12} = 2,87(0,16...0,24)\omega_k =$

 $=0,46...0,689\omega_k$, т.е. частота вращения внутреннего колеса резко увеличивается, а наружного - уменьшается.

Экспериментальные данные адекватны расчетным: - при $P_{\kappa p}$ =0 κ_{RB12} =1,03...1,27 – внешние колеса забегают;

- при
$$P_{KP}=0$$
 $\kappa_{RB12}=-0.933...1,03.$

Аналогичные построения произведены на рис. 3 для схемы с забеганием внешних колес.

Для колеса i=1 из теоремы синусов получим

$$\frac{\Delta V_{13}}{\sin \varphi_{\kappa}} = \frac{\Delta V_{\kappa 1}}{\sin(180^{\circ} - \alpha_{1} + \varphi_{\kappa})}$$

$$\nabla V_{k1} = \frac{\nabla V_{k13}}{\sin(\alpha_1 + \varphi_k)} \sin \varphi_k.$$

При
$$\alpha_1 = 20^\circ$$
, $\varphi_K = 10^\circ$

$$\nabla V_{k12} = \frac{\nabla V_{k13}}{\sin 30^{\circ}} * \sin 10^{\circ} = 0.35 \,\Delta V_{k1}.$$

Отсюда следует, что при движении по схеме la межколесный дифференциал переднего моста подвержен блокированию.

Соотношение для κ_{RB12} приобретает вид

$$\kappa_{RB12} = \frac{R_1}{R_2} = \frac{\cos \alpha_2}{\cos \alpha_1} * \left[1 + \frac{B}{R_4^0 + \left(\frac{\Delta \omega * \sin(\alpha_1 - \varphi_k)}{\omega_k * \sin \varphi_k}\right)} \right].$$

Если забегают внешние колеса

$$\frac{\Delta\omega}{\omega_{K4}} = 0,174 \text{ in } \varphi_K = 10^\circ,$$

$$\kappa_{RH12} = \frac{R_1}{R_2} = \frac{\cos 24}{\cos 20} * \left[1 + \frac{1.68}{6.4 * (1 - 0.267 * \frac{\sin 10}{\sin 10})} \right] = 1.35$$

Если
$$\frac{\Delta \omega}{\omega_{rA}} = 0.174$$
 и $\varphi_{K} = -10^{\circ}$,

$$\kappa_{RB12} = \frac{R_1}{R_2} = \frac{\cos 24}{\cos 20} * \left[1 + \frac{1,68}{6,4 * (1 + 0,174 * \frac{\sin 30}{\sin 10})} \right] = 1,0725.$$

Экспериментальные данные адекватны расчетам:

- при $P_{\kappa p}$ =0 κ_{RB12} = -1,03...1,27 внешние колеса забегают:
- при $P_{KD} > 0$ $K_{RB12} = -0.933...1.03$.

Данный кинематический анализ произведен исходя из допущения о том, что происходит свободное т.е. защемленное обкатывание.

Результирующий угол ϕ_{κ^4} образуется в результате сложения углов увода — бокового и вызванного поворотом контактного отпечатка.

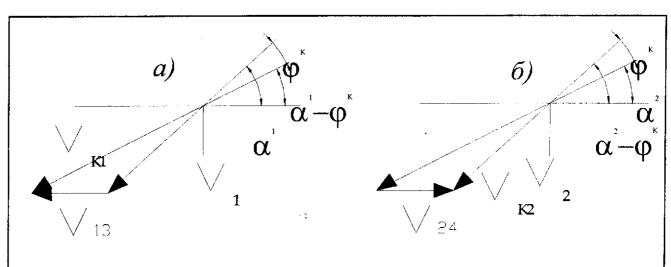


Рис. 3 План скоростей колёс при забегании внешних колёс: а - правого борта, б - левого борта.