загрязнений и увлажнений // Науч.-техн. ведомости Санкт-Петербургского гос. Политех. Ун. 1(214) 2015. С 114 – 122.

- 3. И.И. Ташлыкова-Бушкевич и др./ Морфология и элементный состав как факторы, определяющие смачиваемость поверхностей фольг сплавов алюминия, полученных высокоскоростной кристаллизацией //Мат. XI межд. к. БЕЛСЗМ. Минск, 2014. С. 72–77.
- 4. Барайшук С.М., Дедюля И.В. /Эксперыментальнае вывучэнне змочвання цвердых паверхняу вадкасцями у курсе агульнай физики. //Весці Беларус. дзярж. пед. ун-та. Сер. 3, Фізіка. Матэматыка. Інфарматыка. 2011. —№4(70). С. 29—32.
- 5. Автоматизированный комплекс для измерения равновесного краевого угла смачивания на плоских поверхностях /Патент РБ 7074 по заявке 20100661, от 12.10.2010 // Е.П. Макаревич, И.С. Ташлыков, С.М. Барайшук, М.А. Андреев.

Бобрович О.Г., к.ф.-м.н., доцент,

Белорусский государственный технологический университет Барайшук С.М., к.ф.-м.н., доцент

Белорусский государственный аграрный технический университет, Минск

СВОЙСТВА ПОВЕРХНОСТИ СПЛАВА АМг2М, ФОРМИРУЕМОЙ ИОННО-АССИТИРУЕМЫМ ОСАЖДЕНИЕМ МОЛИБДЕНА И ТИТАНА

В данной работе изучали закономерности смачивания и микротвердость поверхности алюминиевого сплава АМг2М, модифицированного осаждением молибдена, титана в условиях ассистирования ионами Mo⁺, Ti⁺, соответственно, с использованием резонансного ионного источника вакуумной электродуговой плазмы. Данный источник создает плазму вакуумного электродугового разряда, которой одновременно генерируются положительные ионы и нейтральная фракция из материала электродов источника ионов. В качестве материала электродов применялся чистый молибден и титан 99,9%. Осаждение покрытия проводили при ускоряющем напряжении U = 3, 6, 9, 12, 15 кВ для ионов $Mo^{\hat{+}}$, Ti^{+} и интегральных потоках ионов $1.1 \cdot 10^{17} - 2.1 \cdot 10^{17}$ см⁻². Морфология поверхности исходных и модифицированных образцов изучалась, используя атомно-силовую микроскопию в контактном режиме (атомно-силовой микроскоп NT-206), микротвердость с помощью прибора MVDM8, а смачивание дистиллированной водой определяли по равновесному краевому углу Θ смачивания (РКУС).

Средняя шероховатость исходного образца сплава АМг2М составляла 34,3 нм и снижалась до 7,8 нм для ассистирующих ионов Mo^+ и до 14,4 нм для ионов Ti^+ при ускоряющем напряжения $U=12~\mathrm{kB}$.

При внедрении сравнимых доз ионов молибдена и титана в образцы сплава с ростом ускоряющего напряжения значения РКУС также увеличивались (рис. 1). Исходная поверхность сплава была гидрофильной (Θ = 64,8°) и оставалась гидрофильной после модифицирования при всех значениях ускоряющих напряжений для ассистирующих ионов титана. При осаждении молибдена поверхность оставалась гидрофильной после модифицирования при U = 3 и 6 кВ, а после модифицирования сплава при U = 9, 12, 15 кВ для ассистирующих ионов поверхность стала гидрофобной и значение РКУС увеличилось до Θ = 98,1° при 15 кВ.

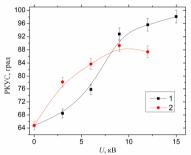


Рис. 1. Зависимость краевого угла смачивания дистиллированной водой поверхности сплава AMr2M от ускоряющего напряжения для ассистирующих ионов: $1-Mo^+$: $2-Ti^+$

При измерении чисел микротвердости, чтобы исключить влияние масштабного эффекта, относительное изменение микротвердости $\Delta H/H_{\rm исx}$ модифицированных образцов сплава алюминия определялось для одинаковых глубин проникновения индентора микротвердомера. Нагрузка на индентор P менялась в интервале от 10 до 100 г, что соответствовало изменению глубины проникновения индентора от $2,2\pm0,1$ до $7,5\pm0,3$ мкм. Следует отметить, что толщина модифицированного слоя была на 1-2 порядка меньше глубины проникновения индентора микротвердомера в поверхность модифицированного образца. Данные об относительном изменении микротвердости поверхности сплава алюминия после ионноассистируемого осаждения Ti-покрытия и Mo-покрытия представлены в таблице, которые свидетельствуют о том, что при нагрузках на индентор, равных 50 и 100 г, относительное изменение микротвердости сплава алюминия лежит в пределах погрешности измерений чисел микротвердости. Увеличение относительного изменения микротвердости на 13% наблюда-

ется при осаждении Ті при ускоряющем напряжении U=3 кВ, на 15% (U=6 кВ) и осаждении Мо (U=9 кВ) — при малых нагрузках (10 и 25 г) на индентор микротвердомера. Уменьшение $\Delta H/H_{\rm HCX}$ на 8% наблюдается при осаждении Ті (U=9 кВ) и при осаждении Мо (U=6 кВ) при нагрузке 10 г на индентор микротвердомера.

Таблица — Относительное изменение микротвердости сплава алюминия марки АМг2М, модифицированного ионно-ассистируемым осаждением Мо-покрытий и Ті-покрытий

Относительное	Осаждаемый	<i>Р</i> ,	<i>U</i> , кВ			
изменение мик- ротвердости	материал		3	6	9	12
		10	+0,13	+0,06	-0.08	0,00
	Ti	25	+0,03	+0,15	-0,02	+0,10
		50	+0,03	0,00	+0,01	+0,06
$\Delta H / H_{\text{ucx}}$		100	+0,03	+0,01	+0,03	+0,04
		10	+0,03	-0.08	+0,15	-0,06
	Mo	25	-0,01	+0,07	+0,14	-0,01
		50	+0,01	-0,01	+0,06	-0,04
		100	+0,01	+0,06	+0,04	-0,02

Изменение микротвердости поверхности сплава АМг2М при ионноассистируемом осаждении покрытий обусловлено, по-видимому, конкуренцией двух механизмов. Один механизм заключается в формировании на поверхности образца слоев с повышенными прочностными свойствами. Причинами увеличения микротвердости, как известно, является образование в приповерхностных областях карбидов металлов и структурных дефектов, формируемых при ионно-лучевом воздействии. Второй механизм связан с разупрочнением приповерхностных слоев полученных структур. Нами ранее были проведены исследования методом ядерных реакций [1], которые установили, что в покрытиях, полученных ионноассистируемым осаждением содержится ~6–10 ат. % водорода, что приводит к уменьшению прочности поверхности образца.

Список использованных источников

1. Изучение ядерно-физическими методами металлосодержащих (Ті, Co)-покрытий, осажденных методом ионного ассистирования на кремний / О.Г. Бобрович, И.С. Ташлыков, В.В. Тульев, С.М. Барайшук // Физика и химия обработки материалов. − 2006. – № 1. – С. 54–58.