ПЕРЕРАБОТКА И УПРАВЛЕНИЕ КАЧЕСТВОМ СЕЛЬСКОХОЗЯЙСТВЕННОЙ ПРОДУКЦИИ

Используя результаты моделирования, экспериментальные данные могут быть интерпретированы следующим образом. Экспериментально наблюдаемое медленное уменьшение и возрастание люминесценции, а также однозначное проявление этих процессов в моделированных кинетиках люминесценции свидетельствует о том, что в системе под действием лазерного возбуждения возникает новое состояние, взаимосвязанное с излучательным состоянием иона европия. Природа нового состояния и соответствующего ему уровня до конца не понята. Заселение обоих состояний зависит от температуры, длины волны возбуждения, агрегатного состояния и других факторов. Конкретные параметры наблюдаемой люминесценции определяются условиями, при которых между этими состояниями устанавливается равновесие, способное изменяться под действием фотовозбуждения комплекса. Можно предположить, что наличие двухцентровости в кристаллическом комплексе Eu(ДБМ)₃ТФФО при 300 К может быть вызвано следующими причинами – реакция изменения (обмена) лигандного окружения и/или существование структурных изомеров лигандов.

Комплексы РЗЭ в кристаллическом состоянии могут содержать две группы молекул воды, различающихся по степени подвижности в кристаллической решетке: группа из жесткофиксированных молекул воды в координационной сфере и группа из переменного числа подвижных молекул воды, для которых существует потенциальный барьер вхождения в координационную сферу. При возбуждении в полосу поглощения лигандов прочность иона с лигандами ослабевает, создаются условия внедрения дополнительных молекул воды в первую координационную сферу (химический обмен), что приводит изменению характеристик люминесценции иона европия. При фотовозбуждении количество подвижных молекул воды в первой координационной сфере будет стремиться к равновесному состоянию с количеством жесткофиксированных молекул воды. Можно предположить, что в случае кристаллического состояния фотоиндуцированная реакция изменения лигандного окружения будет замедленной, поскольку проникновение атмосферной воды к отдельным комплексам РЗЭ, находящимся в глубине кристаллической решетки образца, затруднено (недостаток лабильных лигандов). В противоположность этому, в жидком растворе равновесное состояние лигандного состава первой координационной сферы достигается быстро из- за высокой концентрации (избыток лабильных лигандов) и диффузионной подвижности молекул воды.

Наличие разноцентровости для комплекса Eu(ДБМ)₃ТФФО при 300 К может быть вызвано существованием структурных изомеров лигандов, например, из-за внутреннего вращения фенильных колец относительно простых связей. Для кристаллического состояния процесс нарушения равновесия между внутримолекулярными изомерами в большей степени определяется условиями фотовозбуждения.

Весьма весомым доводом в пользу выдвинутых гипотез об изменении динамического равновесия между двумя центрами комплекса европия служит тот факт, что при азотной температуре (77 K) для Eu(ДБМ)₃ТФФО в кристаллическом агрегатном состоянии процесс медленного уменьшения и возрастания люминесценции не наблюдаются. Это является результатом жесткой иммобилизации молекул воды в кристаллической среде комплекса, а также значительному торможению вращательной подвижности структурных фрагментов лигандов иона европия.

Работа выполнена в рамках проекта №Ф17-005 с БРФФИ.

Список использованной литературы

- 1. Hemmilä, I. Progress in Lanthanides as Luminescent Probes / I. Hemmilä, V. Laitala // J. Fluoresc. 2005. V. 15, No.4. P.529–542.
- 2. Selvin, P.R. Principles and biophysical applications of lanthanide—based probes / P.R. Selvin // Annu. Rev. Biophys. Biomol. Struct. 2002. V.31. P. 275-302.
- 3. Венчиков, В.Я. Процессы преобразования энергии электронного возбуждения в трис-нафтоилтрифторацетонате европия / В.Я.Венчиков, М.П.Цвирко // Журн. прикл. спектроск. -2001. Том 68, №3. С. 363-367.
- 4. Внутримолекулярный перенос энергии в мезогенном аддукте европия (III) / Д.В.Лапаев [и др.] // Оптика и спектроскопия. 2008. Т.104, №6. С. 939–945.
- 5. Role of Ligand-to-Metal Charge Transfer State in Nontriplet Photosensitization of Luminescent Europium Complex / Li-Min Fu [et al.] // J. Phys. Chem. A. 2010. –Vol.114, No.13. P. 4494–4500.
- 6. Характеризация T_1 —состояния молекул порфиринов на основе численного моделирования кинетики уменьшения и возрастания интенсивности флуоресценции / И.В. Станишевский [и др.] // Оптика и спектроскопия. 2016. Т.121, №5. С. 770–777.

УДК 665.112

Бондаренко Ж.В., кандидат технических наук, доцент, Лиходиевский А.В. Белорусский государственный технологический университет, г. Минск Слонская С.В., кандидат химических наук, доцент Белорусский государственный аграрный технический университет, г. Минск

ВЛИЯНИЕ ПАРАМЕТРОВ ЭКСТРАГИРОВАНИЯ НА СВОЙСТВА МАСЛЯНОГО ЭКСТРАКТА

В настоящее время возрос интерес производителей пищевых продуктов, лекарственных препаратов и косметических средств к компонентам, полученным на основе растительного сырья. На рынке представлены разнообразные растительные извлечения, отличающиеся друг от друга условиями получения, составом и свойствами. При производстве косметических и лекарственных средств важное значение имеют экстракты,

Секция 4: ФИЗИКО-ХИМИЧЕСКИЕ ОСНОВЫ И МЕТОДЫ ПЕРЕРАБОТКИ СЕЛЬСКОХОЗЯЙСТВЕННОЙ ПРОДУКЦИИ

содержащие в качестве биологически активных веществ (БАВ) липофильные компоненты [1]. Перспективными источниками комплекса липофильных БАВ являются масляные экстракты, поскольку они содержат активные компоненты как растительного сырья, так и экстрагента (масла): каротиноиды, токоферолы, хлорофиллы, ненасыщенные жирные кислоты и фосфолипиды, глюкозиды, эфирные масла и др. [2]. Они являются составной частью ряда массажных и регенерационных масел, кремов, бальзамов, мазей. В процессе хранения масляные экстракты подвергаются окислению, что сопровождается глубокими изменениями и разрушением БАВ. Поэтому исследования в данном направлении представляют научный и практический интерес.

Цель данной работы заключалась в исследования влияния параметров экстрагирования на свойства масляного экстракта гвоздики.

Выбор в качестве сырья гвоздики (пряности) связан с ее богатым химическим составом. В составе гвоздики присутствуют: каротин, витамины С, Е, К и группы В, минералы (калий, натрий, железо, медь, селен, цинк и др.), полиненасыщенные жирные кислоты, эфирные масла и др. Гвоздика содержит около 6% протеинов, 20% липидов и 27% углеводов [3]. Эти компоненты обеспечивают комплекс полезных свойств гвоздики, а присутствующие в ней природные антиоксиданты могут также положительно влиять на устойчивость к окислению ее масляных экстрактов.

Для получения экстракта гвоздики использовали рафинированное дезодорированное подсолнечное масло. Соотношение подсолнечное масло: гвоздика составляло 3:1,5:1 и 10:1. Экстракцию гвоздики осуществляли холодным (18–20°С, 7 сут) и горячим (45–55°С, 3 ч) способами при периодическом перемешивании. Полученный экстракт отделяли от растительного сырья фильтрованием и анализировали основные органолептические и физико–химические показатели.

Анализ показал, что, по сравнению с исходным подсолнечным маслом, экстракты приобрели зеленоватый оттенок, а также легкий аромат и привкус гвоздики, что свидетельствует о переходе экстрактивных веществ растительного сырья в экстракт. Это больше проявилось в образцах, полученных горячим способом и при большем количестве гвоздики, взятом для экстрагирования (соотношение масло : гвоздика -3:1).

Влияние параметров экстракции на перекисное и кислотное числа масляных экстрактов гвоздики представлено на рисунке. Показатели определяли в соответствии с методикой, приведенной в [4]. Перекисное число характеризует присутствие в масляном экстракте первичных продуктов окисления (перекисей и гидроперекисей); данному процессу подвержены растительные масла вследствие большого содержания ненасыщенных жирных кислот.

Установлено, что перекисное число масляных экстрактов гвоздики зависит как от способа получения экстракта, так и от соотношения экстрагент: растительное сырье. При использовании холодного способа показатель находится в интервале 5,31-7,97 ммоль ½ $O/\kappa \Gamma$, а при горячем способе экстрагирования значения показателя немного выше и составляют 6,56-8,44 ммоль ½ $O/\kappa \Gamma$. По сравнению с исходным подсолнечным маслом перекисное число экстрактов возросло (от 4,8 ммоль ½ $O/\kappa \Gamma$), что свидетельствует о протекании окислительных процессов, однако его значение для всех анализируемых образцов ниже требований, которые предъявляются к растительным маслам пищевого назначения (не более 10 ммоль ½ $O/\kappa \Gamma$) [5].

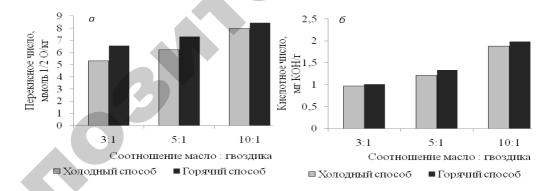


Рисунок 1 — Перекисное (a) и кислотное (δ) числа масляных экстрактов гвоздики, полученных в различных условиях

Из рисунка 1 видно, что кислотное число образцов масляного экстракта возрастает от 0,97 до 1,99 мг КОН/г с увеличением количества подсолнечного масла, используемого для экстракции; его значение в 3–6 раз выше, чем у исходного подсолнечного масла (0,33 мг КОН/г). Изменение данного показателя связано как с переходом экстрактивных веществ кислого характера из гвоздики в масло, так и с вторичными превращениями триглицеридов растительных масел в результате их окисления. Для всех образцов масляного экстракта, полученных в рамках исследуемых параметров, кислотное число оказалось выше требований, предъявляемым к пищевым маслам [5].

Экспериментальные данные говорят о том, что чем больше гвоздики присутствует в системе в процессе экстракции, тем ниже перекисное и кислотное числа масляного экстракта. Это свидетельствует о переходе в масляный экстракт антиоксидантов, содержащихся в гвоздике, и их положительном влиянии на стабильность системы. Однако количества данных компонентов недостаточно для предотвращения окислительных процессов

ПЕРЕРАБОТКА И УПРАВЛЕНИЕ КАЧЕСТВОМ СЕЛЬСКОХОЗЯЙСТВЕННОЙ ПРОДУКЦИИ

в экстрактах. Представляет интерес определение количества БАВ гвоздики, которые перешли в масляный экстракт и остались в растительном сырье, чтобы оценить эффективность процесса экстракции и выбранных режимных параметров, а также исследование устойчивости полученных экстрактов к окислению при хранении.

Список использованной литературы

- 1 Шиков А.Н., Макаров В.Г., Рыженков В.Е. Растительные масла и масляные экстракты: технология, стандартизация, свойства. М., 2004. С.100–112.
- 2 Тринеева О.В., Сафонова Е.Ф. Сравнительная характеристика растительных масел и масляных экстрактов, применяемых в фармации // Химия растительного сырья. 2003. №4. С.77–82.
- 3 Лавренов В.К., Лавренова Γ .В. Современная энциклопедия лекарственных растений. М.: ОЛМА Медиагрупп, 2007. 275 с.
- 4 Лабораторный практикум по химии жиров / Н. С. Арутюнян [и др.]; под ред. Н. С. Арутюняна, Е. П. Корненой. СПб.: ГИОРД, 2004. 264 с.
- 5 Паронян, В.Х. Технология жиров и жирозаменителей. М.: ДеЛи принт, 2006. 760 с.

УДК 65.018:663.58

Головко М.П., доктор технических наук, профессор, Пенкина Н.М., кандидат технических наук, доцент, Колесник В.В. Харьковский государственный университет питания и торговли, Украина

ИССЛЕДОВАНИЕ КАЧЕСТВА ВОДЫ ДЛЯ ПРОИЗВОДСТВА ЛИКЕРО-ВОДОЧНЫХ ИЗДЕЛИЙ

При производстве алкогольных напитков вода так же, как и спирт, является важной составляющей частью, поэтому ее качество во многом определяет органолептические показатели, а также устойчивость напитков во время хранения.

Предприятия используют смягченную водопроводную или артезианскую воду, качество которой определяется органолептическим показателям, химическим составом и степенью бактериальной чистоты. Вода должна соответствовать требованиям ДСТУ 7525:2014 «Вода питьевая. Требования и методы контроля качества» [1].

В ликероводочном производстве к воде предъявляются требования по содержанию отдельных компонентов и показателей, характеризующих органолептическую оценку качества, окисляемость, рН, жесткость, щелочность, сухой остаток, массовую концентрацию отдельных ионов [2].

Вода должна быть бесцветной, прозрачной жидкостью, без запаха, приятной на вкус. Прозрачность воды характеризуется отсутствием в ней взвешенных частиц, наличие которых может служить причиной образования мути или опалесценции изделий при хранении. Прозрачность – параметр, к которому предъявляются жесткие требования, особенно для ликероводочных изделий, поставляемых на экспорт. Он определяется параметром – оптическая плотность, в процентном отношении к эталону – дистиллированной воде.

Цветность – это степень окраски воды, измеряется в градусах платиново-кобальтовой шкалы. Цветность воды, как и прозрачность – показатель, который не характеризует химический состав загрязнителей, но является очень важным.

Привкус и запах обусловливают как природные соединения (гуминовые кислоты, гидроокиси железа, марганец, растворенный сероводород), так и искусственные (растворенные нефтепродукты, антропогенные загрязнители). В воде привкус и запах не должны превышать одного балла при 20°C.

В ликероводочном производстве особое значение придается жесткости воды, обусловленной содержанием солей кальция и магния. При использовании жесткой воды в ходе производства алкогольных напитков выпадает осадок, в результате чего водно-спиртовая смесь делается мутной, а напиток приобретает неприятный вкус. Поэтому жесткость воды, которая используется, четко регламентирована и не должна превышать 7 ммоль/дм³.

Общая минерализация (сухой остаток) — показатель, характеризующий количественное определение солей и минералов в воде. Нормативные документы предусматривают допустимую общую минерализацию не более 1000 мг/дм³, но, как показывает практика, для изготовления качественных напитков содержание минеральных примесей должно быть не выше 500 мг/дм³ [3].

Окисляемость — это величина, характеризующая наличие в воде органических и неорганических веществ, которые окисляются при выполнении определенного испытания. Этот показатель является комплексным, и дает представление о насыщенности воды органическими соединениями.

рН – водородный показатель, характеризующий кислотность воды, для ликероводочного производства должен находиться в пределах от 6 до 9.

Контроль и регулирование вышеназванных показателей позволяет избежать выпадения осадка в готовых напитках при условии соблюдения технологии производства и соответствующего хранения.

Минеральные вещества, растворенные в воде, по-разному могут влиять на органолептические показатели ликероводочных изделий.