удк 621.357

к.т.н. Каптур З.Ф., БАТУ к.б.н. Денисенко Н.П., ин-т физиологии Анга

ИССЛЕДОВАНИЕ РЕЖИМОВ ТЕЧЕНИЯ ВОДНЫХ РАСТВОРОВ В КАНАЛАХ ЭЛЕКТРОХИМИЧЕСКОГО РЕАКТОРА

С использованием разработанных нами математических моделей течения растворов в различных зонах щелевых камер электрохимического реактора исследовано влияние режимов течения на эффективность испольвования электровнергии и долговечность основных элементов реактора.

Среднюю зону щелевого канала протяженностью 0,4-0,6 от его общей длины \mathcal{L}_{κ} можно рассматривать как реактор идеального вытеснения. При этом местная скорость потока \mathcal{U}_{κ} -соля , а коэффициент продольного перемешивания \mathcal{L}_{κ} -голя для всего диапазона значений гидравличествого радиуса \mathcal{R}_{κ} канала (для толщины потока $\mathcal{L}=1,0-2,5$ мм и его ширине $\mathcal{L}_{\kappa}=0,15-0,25$ \mathcal{L}_{κ}). Малый диаметр пузырьков газа, образующихся при электролизе раствора в этой зоне канала, позволяет рассматривать поток как ламинарный однофазный для всего исследуемого диапазона его скоростей. На конечном участке канала (0,2-0,4 \mathcal{L}_{κ}) поток является турбулентным двухфазным. Выстрый рост диаметра пузырьков газа в этой зоне приводит к увеличению их скорости подъема, особенно при прямотоке в системе "газ — жидкость".

Установлены зависимости скорости и диаметра пувырьков газа от висоты их подъема, начальной скорости $\mathcal V$ и температуры потока для разных значений плотности тока. Турбулентные пульсации, возникающие при ускоренном движении пувырьков относительно осредненной скорости потока, снижают интенсивность разделения ионов, что снижает КПД реактора.

Экранирование пузырьками электродов в сочетании с разогревом раствора приводит к ускоренной эрровии поверхностного задитного слоя электродов. Определены условия, при которых симмется отрицательное действие названных факторов.

Исследованы режимы струйного течения потока на начальном участие канала и их влияние на эпору скоростей и гидродинамические нагрузки на ионопроницаемую мембрану.

Исследованиями выявлено влияние ряда факторов на эффективность th долговечность работы электрохимических реакторов.