УДК 632.95:634.739.2/3

к.т.н.,с.н.б. Мисун Г.В., БАТ

Для борьбы с сорно? растительностью - постоянной спутикцей клюкай, наряду с агротехническими и биологическими приемами, серьезное внимание уделяется вопросам применения гербицидов. Так, уничтожение сорной растительности раствором гербицида метолом сизывания, значительно повышает продуктивность васоренных плантаций (90...100% уничтожения сорняков), снимает затрати труда с 250 - при ручной прополке до 0,6 чел.ч/га, и при соблюдении агротехнических требований не отрицательно влияет на экологию и кечество продукции. Это подтверждает результати овнитарно-химического анализа клюкви, экращенной с применением на плантациях росулена (1,0...1,25 кг/га). Определяя эфрективность применения гербицидов, помимо урожайности, учитиваются и интереом экологии. В связи с этим представляется актуальным построение соответствующай модели, определяваей целессобразность применения гербицидов.

Для решения этся задачи рассчитивается эффективность агрорабог с точки эрения окупаемости произведенных затрат, то есть

$$\Pi_{3} = (3_{r} + 3_{t}) \cdot K_{H} \cdot Y_{p}, \quad (I)$$

где $\Pi_{\bf z}$ — порог денежных затрат на использование гербици—дов, который должен покрываться сохраненной экологически чистой продукцией, руб/га; $K_{\rm H}$ — коэффициент накладных расходов; $S_{\rm P}$ — иннимально необходикий уровень рентабельности; $S_{\rm r}$ — затраты на
применение гербицида, руб/га.

$$3_r = C_n + P_n + 3_{c,-x}$$
, (2)

где C_n - стоимость используемого препарата, руб/га; P_n - затраты на приготовление, транспортировку и энесение

рабочего раствора, губ/га; $3_{c,-x}$ - затраты на санитарно-хинический анализ ягод и исследование других объектов, руб/га; 3_f - расходы на уборку и доработку сохраненного урожал, руб/га.

$$3_{y} = X \cdot \Pi_{y} , \qquad (3)$$

тае Π_{γ} — приводенные затраты на уборку уроквя, руб/т; X — количество сохраненного урожая с убранеоп плодели, т/га.

$$X = Y \cdot K_{g} \cdot K_{g,g} , \qquad (4)$$

где Y — урожан лгед т/га; K_{z} — кооррициент биологической эффективности препарата; $K_{z,y}$ — кооррициент экслогической устоичивости культуры (серта).

$$K_{av} = K_{av} \cdot (1 - V_{cr})$$
, (5)

где $K_{\alpha,\gamma}$ - коэррициент относительной урожанности культуры; V_{σ} - коэррициент вариации величин, влияющих на урожалность в виборке.

С учитом вишеналоженного виражение (4) можно записать в следующем виде

$$X = (1 - V_G) \cdot Y \cdot K_S \cdot K_{o.v.} \cdot (6)$$

Определим минимальную стоимость сохраненного экологически чистого урожая с единицы площади

$$C_{y} = U \cdot X$$
 (134 $C_{y} = (1 - V_{g}) \cdot y \cdot U \cdot K_{g} \cdot K_{gy}$, (7)

где Ц - цена урожая, руб/т.

Поскольку Су полина быть не менее затратной части операцию применения гербицида и уборки ягод, рормула (I) примет следующий вид

Разница межау лезой и правой часты выражения (8) и есть ээличина эффективности. Преобразовав (8), определим урожаяность У., при которой экономически целесообразно и экслогически белопесия применение пербицида

$$y \gg \frac{K_{H} \cdot Y_{p} \cdot (C_{n} + P_{n} + 3_{c-k})}{(1 - V_{b}) \cdot K_{a} \cdot K_{c,i} \cdot (4 - N_{i} \cdot K_{H} \cdot Y_{p})}, \quad (9).$$

Дания для гасчета (?) приводятся в технологических картах.