

Рисунок 2 – График изменения угла выхода клубня из впадины

Из выше представленной зависимости следует, что увеличение радиуса первого ролика приводит к уменьшению угла є выкатывания клубня, тоже наблюдается с увеличением размеров клубня, отсюда следует, что роликовая поверхность с изменяющимися размерами роликов по ходу движения клубней повысит точность разделения на фракции и уменьшит повреждаемость крупных клубней от защемления роликами.

Литература

- 1. Колчин Н.Н. Комплексы машин и оборудования для послеуборочной обработки картофеля и овощей.- М.: Машиностроение. 1982. 268с.
- 2. Халанский В.М., Горбачёв И.В. Сельскохозяйственные машины. Издательство «Колос», 2004.-624с.

УДК 631.363

КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ ПРОЦЕССА ДВИЖЕНИЯ КАПЕЛЬ КОНСЕРВАНТА В СИЛОСОПРОВОДЕ КОРМОУБОРОЧНОГО КОМБАЙНА

Авраменко П.В. (БГАТУ)

Введение

В настоящее время в Республике Беларусь для обеспечения своевременной заготовки высококачественных кормов наращивается оснащение сельскохозяйственных организаций высокопроизводительными кормоуборочными комплексами [1]. Особенностью внесения консерванта на данных машинах является впрыск в пневмокормовой поток, обладающий высокими скоростными характеристиками, что приводит к высоким потерям и низкой равномерности распределения консерванта в заготавливаемом корме [2].

Моделирования движения пневмокормового потока и капель жидкого консерванта в силосопроводе кормоуборочного комбайна, позволяет обосновано выбрать место установки предлагаемого оборудования позволяющее устранить вышеперечисленные недостатки [3, 4, 5].

Основная часть

В результате теоретических исследований получено уравнение движения частицы измельченного растительного материала вдоль траектории описывающей силосопровод

$$m_{_{q}} \frac{dv_{_{q}}}{dt}\Big|_{_{S}} = -m_{_{q}} g \sin \beta - f_{_{mp}} \left(\frac{m_{_{q}}v_{_{q}}^{2}}{R_{_{\kappa p}}} - m_{_{q}}g \cos \beta \right) - \widetilde{C}_{_{D}}v_{_{q}}$$
. с начальным условием $v_{_{q}}\Big|_{_{t=0}} = v_{_{0}},$ (1)

 $\widetilde{C}_{D}=0.5C_{D}~
ho_{s}S_{u}\left|v_{s}-v_{u}\right|$; C_{D} — коэффициент аэродинамического сопротивления

частицы; ρ_{s} — плотность воздуха, кг/м³; S_{u} — площадь миделева сечения сферической частицы, м²; v_{u} , v_{s} — скорости движение частицы и воздуха, м/с; f_{mp} — коэффициент трения частицы измельченного растительного материала о поверхность силосопровода; m_{u} — масса частицы, кг; β — угол наклона касательной к силосопроводу в данной точке к оси X, град.

Исследование процесса движения капли консерванта и ее проникновение в иневмокормовой поток был разделен на две задачи [6]:

- задача 1: движение капли консерванта в воздушном потоке (вдоль нижней грани боковой поверхности силосопровода область 1 рисунка 1). Искомым решением этой задачи является скорость капли и координаты ее центра тяжести в момент столкновения с пневмокормовым потоком;
- задача 2: движение капли консерванта в пневмокормовом потоке (верхняя часть силосопровода область 2 рисунка 1. Искомым решением этой задачи является скорость, координаты центра тяжести, глубина проникновения и снос капли.

Для области 1 получены уравнения движения одиночной капли консерванта в проекциях на соответствующие оси

$$m_{\kappa} dv_{\kappa,x}/dt = -\widetilde{C}_D(Re) v_{\kappa,x} - m_{\kappa} g \cos \beta + q_{\kappa} E, \qquad (2)$$

$$m_{\kappa} d\nu_{\kappa,y} / dt = \widetilde{C}_D(Re)(\nu_{\kappa} - \nu_{\kappa,y}) - m_{\kappa} g \sin \beta, \qquad (3)$$

$$m_{\kappa} dv_{\kappa,z}/dt = -\widetilde{C}_D(Re)v_{\kappa,z},$$
 (4)

где $v_{\kappa x}$, $v_{\kappa y}$, $v_{\kappa z}$ – проекции скорости движения капли консерванта на выбранные оси м/с:

 m_{κ} – масса капли консерванта, кг; q_{κ} – заряд капли консерванта, Кл; E – напряженность электростатического поля, B/M, β – угол наклона силосопровода в точке впрыска консерванта, град.

Для области 2 уравнения движения капли консерванта имеют вид

$$m_{\kappa} dv_{\kappa,x}/dt = -C_D v_{\kappa,x} - m_{\kappa} g \cos \beta + q_{\kappa} E, \qquad v_{\kappa,x}|_{t=t_{-}} = v_{\kappa,x,6x}; \qquad (5)$$

$$m_{\kappa} dv_{\kappa,y} / dt = C_D (v_{\kappa n} - v_{\kappa,y}) - m_{\kappa} g \sin \beta, \qquad v_{\kappa,y} \Big|_{t=t_{sr}} = v_{\kappa,y,sx}; \qquad (6)$$

$$m_{\kappa} dv_{\kappa,z} / dt = -C_D v_{\kappa,z}, \qquad v_{\kappa,z} \Big|_{t=t_{\rm eff}} = v_{\kappa,z,\rm ex}. \tag{7}$$

где $v_{\kappa n}$ – скорость пневмокормового потока, м/с.

Секция 1: Научное обеспечение инновационного развития АПК

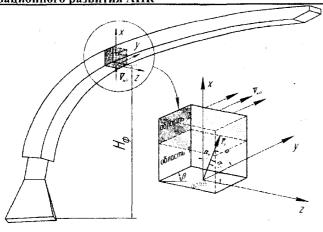


Рисунок 1 - Расчетная область процесса внесения жидкого консерванта в силосопровод

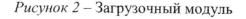
Для численного решения уравнений (1)–(7)учетом характеристик пневмокормового потока, воздушной среды, свойств жидкого консерванта, а также в соответствии С предложенной методикой расчета технологических параметров процесса внесения [7], движения вычислимодели И тельные алгоритмы реализованы в экспериментальном комплексе программ «Konservant-Silosoprovod».

Комплекс программ, который включает следующие программные модули: программа расчета

скорости частиц пневмокормового потока и скорости воздуха в силосопроводе; программа расчета параметров силосопровода, по которым вычисляются угол наклона и кривизна силосопровода в разных точках; программа вычисляет максимальный заряд капли консерванта и электростатическую силу, действующие на каплю консерванта; программа вычисляет структурный параметр пневмокормового потока; программа вычисляет начальную скорость впрыска консерванта; программа вычисляет диаметр капель консерванта; программа вычисляет скорость и координаты капли консерванта при се движении в силосопроводе; и др. программы.

Исполняемый файл создан как проект QuikWin в среде MS Developer Visual Studio (VS) Digital Visual Fortran (DVL) 6.0. Программный комплекс эксплуатируется на персональном компьютере типа IBM PC и работает под управлением операционной системы Microsoft Windows XP.

Входными данными для расчета являются свойства пневмокормового потока, физико-механические свойства измельченного растительного материала, физические свойства консерванта, технологические, конструктивные параметры и др. (см. рисунок 2).


Графическое окно вывода результата в виде траектории движения капли жидкого консерванта в пневмокормовой поток измельченной растительной массы, с выводом скорости движения частицы и среды в текущий момент представлены на рисунке 3.

Кроме того, предусматривается вывод на экран промежуточных результатов величин, зависящих от входных параметров и используемых при построении численного алгоритма, таких как угол наклона трубы силосопровода в месте установки форсунки на силосопроводе, плотность и пористость иневмокормового потока, его структурный параметр, начальную скорость впрыска и др.

В окне вывода (рисунок 3) отображена область сечения трубы силосопровода с местом расположения форсунки. Ось y направлена вдоль оси трубопровода, ось x перпендикулярно движению пневмокормового потока. Высота поперечного сечения силосопровода определяет максимальный размер по оси x, размер вывода по оси y выбирается пользователем.

В каждый расчетный момент времени в окно выводится время, скорость среды в точке нахождения центра капли консерванта, компоненты скорости капли в текущий момент времени, а также координаты капли консерванта.

InputDate	udut - fin	m (ep.)	
Файл Правка	Формат	Вид Справка	
þ.31	!	Bc - 1	пирина трубы силосопровода [м]
0.17		Hc - 1	высста трубы силосопровода [м]
7.35	1	Lci - J	плина силосопровода [н]
5.3	1		высота силосопровода [м]
0.03	3		- средний диаметр частиц [м]
0.06	1.		- средняя длина резки [м]
1080.	3		плотность собст. вец. растений в п/к потоке [
0.31		Bkp -	ширина кормового потока [м]
0.085	1		высота кормового потока [м]
68.	!		нач. скорость кормового потока [м/с] 68.
68.			нач.скорость воздушного потока в силосопров
0.2		k ma	потери массы за счет впитывания консерванте
0.14	!		высота устан. распылителя (место на сил. тр)
0.0015	1		- диаметр сопла распылителя [м]
4.0e+5	3		перепад давления на форсунке распылителя [[
0.7	3		коэффициент расхода сопла распылителя
95	5	alf f -	угол факела распыла [град]
1219	1		плотность консерванта [кг/м3]
0	1		угол ввода частицы консерванта (с осью Ох)
90		alf ky -	угол ввода частицы консерванта (с осыю Оу)
90			- угол ввода частицы консерванта (с осью Oz)
400.0			диаметр капли (частицы) консерванта [мкм]
4.e+4	1		напряженность электростатической зарядки [
0.14	1 m 1		расстояние между распылителем и пластиной
130.0	į.		производит. комбайна [т/час] (или 2.17 т/мин
3.	i (норма внесения консерванта [л/т]
6.e-9	1		коэф. для выч. сопротивления в п/к потоке
2.0	1		коэф. для выч. сопротивления в п/к потоке
0.4	1		коэф. трения частиц о стенку силос. ftr
-0.1	- 1		- величины по оси для просмотра на графике
1.0		minX graf	- величины по оси для просмотра на графике

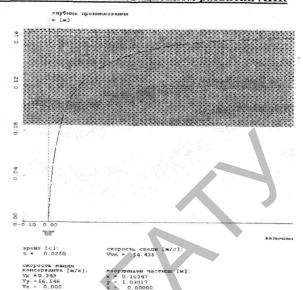


Рисунок 3 – Графическое окно вывода результата

Значения вычисленных скоростей, координаты, время движения и другие параметры капель, в каждый момент времени записываются в файлы. На основании этих файлов, онжом строить анализировать графики изменения величин. Дополнительно рассчитываются параметры кривизны, наклона силосопровода другие технологические параметры.

Заключение

Построены математические модели и конечно-разностные вычислительные алгоритмы реализованные в комплексе программ «Konservant-Silosoprovod» позволяющий рассчитать основные параметры движения пневмокормового потока и капель консерванта в выбранном месте впрыска на силосопроводе кормоуборочного комбайна.

Литература

- 6. Кукреш, Л.В. Инновационные технологии основа развития АПК / Л.В. Кукреш, П.П. Казакевич // Агропанорама. 2010. № 6 С. 2—18.
- 2. Кузьмицкий А.В. Особенности внесения консервантов на кормоуборочных комбайнах // А.В. Кузьмицкий, П.В. Яровенко, П.В. Авраменко // Молодежь и инновации 2009: материалы Междунар. науч.-практ. конф. молодых ученых, Горки, 3—5 июня 2009 г. / Белорус. гос. сельскохоз. акад.; ред. кол.: А.П. Курдеко [и др.]. Минск, 2009. Ч. 2. С. 3—5.
- 3. Способ внесения жидких консервантов в измельченную растительную массу в кормоуборочном комбайне и устройство для его осуществления: пат. 12378 Респ. Беларусь, МПК А 23К 3/00 / А.В. Кузьмицкий, П.В. Авраменко, И.М. Лабоцкий, А.Л. Зиновенко; заявитель Учреждение образования «Белорусский государственный аграрный технический университет». № а 20061344; заявл. 27.12.2006; опубл. 30.10.2009 // Афіцыйны бюл. / Нац. цэнтр інтэлектуал. уласнасці. 2009. № 5. С. 42.
- 4. Устройство для внесения жидких консервантов в измельченную растительную массу: пат. 5702 Респ. Беларусь, МПК А 23К 3/00 / А.В. Кузьмицкий, П.В. Авраменко; заявитель Учреждение образования «Белорусский государственный аграрный технический

университет». — № и 20090109; заявл. 16.02.2009; опубл. 30.10.2009 // Афіцыйны бюл. / Нац. цэнтр інтэлектуал. уласнасці. — 2009. — № 5. — С. 138.

- 5. Устройство для внесения жидких консервантов в измельченную растительную массу на кормоуборочном комбайне: пат. 7370 Респ. Беларусь, МПК А 23К 3/03 / А.В. Кузьмицкий, П.В. Авраменко, И.М., Новиков Р.В., Ануфриев Н.И.; заявитель Учреждение образования «Белорусский государственный аграрный технический университет». № и 20101003; заявл. 12.01.2011; опубл. 30.06.2011 // Афіцыйны бюл. / Нац. цэнтр інтэлектуал. уласнасці. 2011. № 3. С. 167—168.
- 6. Кузьмицкий, А.В. Моделирование внесения консерванта в пневмокормовой поток на кормоуборочном комбайне / А.В. Кузьмицкий, Г.Ф. Громыко, П.В. Авраменко // Агропанорама. 2011. N 25. C. 9-12.
- 7. Кузьмицкий, А.В. Обоснование технологических параметров оборудования для внесения жидких консервантов на кормоуборочном комбайне / А.В. Кузьмицкий, П.В. Авраменко // Агропанорама. -2010. -№ 5. -C. 11–15.

УДК 621.923

ФИНИШНАЯ ОБРАБОТКА СТЕРЖНЕВОГО ИНСТРУМЕНТА ДЛЯ ИЗГОТОВЛЕНИЯ ДЕТАЛЕЙ СЕЛЬСКОХОЗЯЙСТВЕННОГО НАЗНАЧЕНИЯ

Акулович Л.М., д.т.н., профессор, Сергеев Л.Е., к.т.н., Бабич В.Е., к.т.н., Сенчуров Е.В., Падаляк В.В., Игнатчук А.В. (БГАТУ)

В сельскохозяйственном машиностроении широко применяют высокопроизводительные процессы изготовления деталей холодным деформированием. В качестве инструментов для осуществления этих процессов используется стержневой инструмент, как правило, сложного профиля (пуансоны), отличающегося от цилиндрического. Установлено [1], что основными причинами выхода из строя пуансонов являются: адгезия контактной части материала пуансона к материалу обрабатываемой поверхности (30%), деформация (35%) и скалывание рабочей части пуансона (35%). При этом практика показывает, что на долговечность пуансонов существенное влияние оказывает качество их рабочих поверхностей.

Показатели качества поверхности стержневого инструмента формируются в процессе изготовления, в основном, на заключительных операциях и поэтому этим операциям в технологических процессах должно уделяться особое вниманис. Форма сложнопрофильного пуансона предопределила операции качестве отделочной полирование. Наибольшее применение получило полирование на настольношлифовальных бабках НШ-01 с ручной подачей наждачной шлифовальной бумаги (ГОСТ 5009-82 М40) к обрабатываемой поверхности. Качество поверхности при такой обработке зависит от квалификации рабочего. Поэтому недостатком полирования является производительность и высокий процент брака (до 10%) [1].

Для обработки инструментов со сложным профилем рабочей части наиболее эффективными являются способы, основанные на использовании эластичной связки абразивных частиц. Одним из таких способов является технология магнитно-абразивной обработки (MAO) [1,2], обеспечивающая высокое качество рабочей поверхности. При МАО режущим инструментом является ферроабразивный порошок (ФАП), который находится в рабочем зазоре в подвижно-скоординированном состоянии. Роль связки между абразивными зернами выполняет магнитное поле, обладающее упругими силами воздействия на зерна порошка (рис. 1).