- информационная система для формирования базы данных бухгалтерской и статистической отчетности, проведения анализа производственной, финансовой деятельности предприятий и анализа статистической отчетности;
- информационная система сбора и анализа отраслевой отчетности.

Концерн «Белгоспищепром» также использует вышеперечисленные системы.

ПК «Бухстат» используется предприятиями структуры Минсельхозпрода, областными сельскохозяйственными комитетами, департаментом по хлебопродуктам и «Белгоспищепромом» для формирования собственных БД бухгалтерской и статистической отчетности; проведения анализа производственной, финансовой деятельности предприятий, сбора и анализа отраслевой отчетности (рисунок 2).

УДК 681.3+631(635).17

Герасимович Л. С., академик НАНБ, докт. техн. наук, профессор, Сапун О. Л., канд. пед. наук, доцент, УО «БГАТУ», г. Минск

СТРУКТУРНО-ФУНКЦИОНАЛЬНОЕ МОДЕЛИРОВАНИЕ АГРАРНЫХ БИЗНЕС-ПРОЦЕССОВ

Преодолевая традиционную консервативность в планировании и управлении производственно-хозяйственной деятельностью, крупные сельскохозяйственные предприятия республики ощущают настоятельную потребность в повышении уровня механизации производства — автоматизации решения производственных задач. Они переживают переходный период от старых форм и методов организации к новым современным преимущественно компьютеризированным технологиям производства и управления, реорганизации технологических процессов и технического переоснащения производства в целях соответствия производимой продукции потребительскому рынку по ценам, качеству и времени освоения производства.

Внимательный анализ любого предприятия показывает, что его деятельность состоит из огромного количества повторяющихся бизнес-процессов, направленных на достижение определенных целей.

Успех всей деятельности в значительной мере определяется эффективностью отдельных бизнес-процессов. Мировая практика показывает, что такая эффективность предприятия достигается путем оптимизации (или как сейчас принято говорить, реинжениринга) этих бизнес-процессов. Такая постановка задачи многократного повышения эффективности предприятия дала толчок развитию современного научного направления бизнес-проектирования производства и соответствующих сельскохозяйственных учебных курсов, методологии, терминологии, инструментальных средств в системе подготовки специалистов-менеджеров.

Реинжиниринг должен стать одним из важнейших рычагов успешной реорганизации и перестройки, особенно сельскохозяйственных предприятий, являясь характерной чертой современного агропромышленного производства.

При этом используются различные методологии структурного анализа и проектирования, ситуационного анализа, имитационные эксперименты и др. Разработаны и имеют развитие специализированные программные средства, способствующие осуществлению реинжениринга предприятия, начиная с текущего состояния бизнеспроцессов (as is — как есть) и до оптимальной реализации (to be – как надо), циклично повторяя реинжениринг предприятия по мере существенного изменения внутренних и внешних условий.

Основной концепцией такой методологии является концепция предприятия как открытой системы, обменивающейся с окружающей средой ресурсами, продукцией и информацией.

Применение концепции «открытых систем» создает условие повышения гибкости систем управления производством, важнейшим свойством которого является самоорганизация на базе постоянно накапливаемой системы знаний, системного опыта с помощью компьютерного представления о настоящем и будущем предприятия на базе компьютерных информационных технологий.

Арсенал алгоритмов программного обеспечения информационных технологий достаточно обширный и основан на современных методах интеллектуальных вычислений. Таковыми являются деревья целей и решений, систем размышлений на базе аналогий, ассоциаций и последовательностей нечетной логики, генетических алгоритмов, эволюционного программирования, визуализации данных,

нейронных сетей, комбинированных сетей и методов, позволяющих автоматизировать интеллектуальный труд по созданию и использованию банка знаний предприятия для принятия решений по технологии и управлению производством. По своей сути — это коллективный труд различных специалистов предприятия с привлечением профессионалов в области информатики. Труд агроинженера при этом несет одну из важнейших функций — технико-технологическую и информационную направленность механизированного производства.

Комплексный анализ вызывает необходимость применения специальных средств описания и анализа таких систем.

Успех этих систем непосредственно зависит от качества всего комплекса решений на этапе системного проектирования, как раздела компьютерных информационных технологий, определяющего подсистемы, компоненты и способы их объединения при которых система должна функционировать, выбирая наиболее эффективное сочетание работников, машин и программного обеспечения для реализации целей предприятия.

Одной из самых известных и широко используемых в мире систем компьютерного проектирования является SADT (Structured Analisis and Design Technigue) — технология структурного анализа и синтеза. Широкий спектр областей и возможностей использования обеспечивает ее универсальность, что привело к стандартизации и публикации ее части, называемой IDEFO-Icam Definition (интеграция компьютерных и промышленных технологий). Это достигается использованием графических описаний в качестве схем, связывающих воедино различные механизмы, применяемые для описания определенных частей системы с различным уровнем детализации.

Описание системы с помощью SADT называется моделью. В SADT-моделях используются как естественный, так и графический язык. Графический язык организует естественный язык вполне определенным и однозначным способом, отражающим такие системные характеристики как управление, обратная связь и исполнители.

SADT-модель дает полное, точное и адекватное описание системы, имеющее конкретное назначение, называемое целью модели. Математически М есть модель системы S, если М может быть ис-

пользована для получения ответов на вопросы относительно S с точностью A. В этом состоит основа практического моделирования SADT.

Таким образом, модель является некоторым толкованием (отображением) системы. Однако моделируемая система никогда не существует изолированно. Она всегда связана с окружающей средой По этой причине в методологии SADT имеется необходимость точного определения границ системы. Ограничивая систему, SADTмодель позволяет сконцентрировать внимание только на описываемой системе. При этом системный анализ и специфика построения SADT-модели определяется «точкой зрения» аналитика. Аналитиком является инженер, зоотехник, руководитель, что всегда определяет специфику постановки задачи и результаты моделирования (ответы на интересующие конкретного специалиста вопросы). Именно конкретный специалист определяет, что необходимо включить в модель, а что необходимо исключить из моделирования, как произвести выбор нужной информации и форму ее подачи. Достижение цели становится критерием окончания моделирования. Конечным результатом этого процесса является набор взаимосвязанных описаний от самого верхнего уровня и кончая подробным описанием деталей или операций системы.

Каждое из таких тщательно взаимосвязанных описаний называется диаграммой. SADT-модель объединяет и организует диаграммы в иерархические структуры с усиливающейся детализацией «сверху вниз».

Таким образом, методология SADT создана специально для представления сложных систем путем построения моделей описания таких систем, у которых единственный ответ, цель и одна точка зрения. Целью служит набор вопросов, на которые должна ответить модель. Цель и точка зрения — это основополагающие понятия SADT.

Основным рабочим инструментом при создании модели является SADT-диаграмма. Диаграммы имеют собственные синтаксические правила. Графика построения диаграмм позволяет определить различные системные функции и показать, как функции влияют друг на друга.



Рис. 1. Контекстная диаграмма нулевого уровня

В целом SADT-модель является иерархически организованной совокупностью диаграмм. Каждый блок диаграммы и касающиеся его дуги определяют точную границу диаграммы, представляющей декомпозицию этого блока. Эта диаграмма называется диаграммой с потомком, сам декомпозируемый блок называется родительским блоком, а сама диаграмма – родительской.

Диаграмма самого верхнего уровня системы состоит из основного блока и нескольких касающихся дуг и называется контекстной диаграммой нулевого уровня (АО), где отмечены все главные элементы, включая цель и «точку зрения разработчика» (рис. 1).

Каждая диаграмма определяет блоки и дуги. Блоки изображают функции моделируемой системы. Дуги связывают блоки вместе и отображают взаимодействия, взаимосвязи, отношения между ними. Блоки диаграммы представляют собой «функцию – действие». Блок – это активная часть системы. Дуги на диаграмме представляет собой множество объектов (машины, информацию, ресурсы и т.д.), то есть материализованные объекты некоторой технологии.

В самом общем виде диаграмма предприятия нижеследующего

(первого) уровня может быть представлена на рис. 2. Здесь обозначены все атрибуты производственной деятельности: множества материальных (энергетических), информационных и финансовых потоков на входе и выходе, включая процессы основного, вспомогательного и сопутствующего (субдеятельность) производства.

В зависимости от конкретной технологии и организации производства сельскохозяйственной продукции процессы имеют конкретное содержание, например, в животноводстве поить или кормить животных, обеспечивать микроклимат, выполнять плановопредупредительные ремонты технологического оборудования и т.д.

В соответствии с технологией моделирования каждый процесс представляется последующей диаграммой операций более низкого уровня с одним принципиальным условием: все входы и выходы всех диаграмм и их коды должны быть сохранены.

Все процессы, связывающие входы и выходы потоков, имеют математическую модель в виде непрерывных и дискретных математических функций в табличной или вербальной форме.

Математические модели процессов включают управляющие связями функций (в виде дуг, сверху касающихся блоков) и механизмы (снизу), определяющие технологическое оборудование и весь вспомогательный и организационно-технологический комплекс предприятия.

Информационные потоки определяют собой организационноуправляющую и контролирующую подсистему модели предприятия и составляют на практике непременную компоненту производства. Именно эта подсистема позволяет вести непрерывный контроль и мониторинг и автоматизировать все производство.

Особенностью IDEF-технологии моделирования является комплексный коллективный творческий процесс в зависимости от поставленной цели и предметной области декомпозиции модели с позиции руководителя зоотехнической, инженерной, финансовожономической, энергетической и маркетинговой политики.

На основе модели BPWIN, основанной на технологии IDEFмоделирования, можно построить модель данных. Для облегчения этого процесса служит удобный инструмент – механизм двунаправленной связи BPWIN – ERWIN.

ERWIN имеет два уровня представления модели – логический и

физический. На логическом уровне данные связаны с конкретной системой управления базами данных (СУБД) и наглядно представлены для неспециалистов по информатике.

Физический уровень данных это по существу отображение системного каталога, который зависит от конкретной реализации СУБД.

ERWIN позволяет проводить процессы прямого и обратного проектирования баз данных (БД). По модели БД можно сгенерировать схему БД и автоматически создать модель данных на основе системного каталога. ERWIN интегрируется с популярными средствами разработки клиентской части – Rower Builder, Visual Basic, Delphi, что позволяет автоматически генерировать код предложения, который полностью готов к компиляции и выполнению. Для различных сред разработки имеется различная техника кодирования.

Создание современных информационных систем (ИС) требует тесного взаимодействия менеджеров, бинес-аналитиков, системных аналитиков, разработчиков и заказчиков, объединенных единой системой организации совместной работы с использованием системы Model Mart — хранилища модулей с открытым доступом для участников проектов.

Показательным является создание библиотек стандартных решений, позволяющих накапливать и использовать типовые модели, объединяя их при необходимости «сборки» больших систем или анализа принимаемых решений, что позволяет постоянно наращивать возможности ИС путем включения новых инструментов моделирования, анализа и оптимизации и технологии сельскохозяйственного производства продуктов животноводства.

Учитывая недостатки квалифицированных специалистов предприятий в области информатики, внедрение информационно-аналитических систем целесообразно вести методом комплексного творчества одновременно с обучением и повышением доверия к ним. Для этой цели в БГАТУ разработаны концепция, цели, задачи и алгоритмический аппарат производственных научно-информативных центров ресурсоэффективности предприятий, наращивается своевременная эксперно-аналитическая база бизнеспроектирования сельскохозяйственного производства многоотраслевых предприятий.

Литература:

- 1. Черемных С. В., Семенов И. О., Ручкин В. С. Структурный анализ систем: IDEF-технологии. М.: Финансы и статистика, 2001, 2008 с.
- 2. Клещев Н. Т., Романов А. А. Практическое руководство по организации и проектированию информационных систем. М.: Изд-во ООО «Научтехметиздат», 2001, 389 с.
- 3. Герасимович Л. С. Системный анализ агроэнергетики. Авторский курс лекций. Мн.: БГАТУ, 2003, 127 с.

УДК 631.158: 331.5 (476)

Лещиловский П. В., докт. экон. наук, профессор, УО «БГЭУ», г. Минск, Дегтяревич И. И., канд. экон. наук, доцент, Точицкая Е. А., аспирант, УО «ГГАУ», г. Гродно

ТРУДОВЫЕ РЕСУРСЫ НА СОВРЕМЕННОМ ЭТАПЕ

Развитие аграрного производства сопровождается необходимостью эффективного использования трудового потенциала. Переход к рынку, выражающийся в развитии многообразия форм хозяйствования, обуславливает новые трудовые отношения через расширение сфер приложения труда, что вызывает необходимость разработки новых подходов при формировании и рациональном использовании рабочей силы. Складывающиеся в отрасли отношения предполагают подготовку качественно нового, конкурентоспособного на рынке труда работника. Поскольку основой формирования кадрового обеспечения села является демографическая база, то возникает необходимость изучения ее состояния.

Исследования показывают, что в сельской местности имеют место угрожающие депопуляционные процессы, как в целом по республике, так и по Гродненской области. С 1990 по 2003 гг. численность сельского населения республики сократилась на 594,8 тыс. чел. (17,2 %), в том числе по области — на 82,3 тыс. чел. (16,7 %) (рис.1, рис.2).

Снижение количества сельских жителей, занятых в сельскохозяйственном производстве, само по себе проблемой не является, если это происходит в связи с использованием новой техники, из-за