на педаль технического средства, корректируется положение вальца, пропитанного раствором гербицида, относительно поверхности чека. В случае вынужденной остановки технического средства оставшаяся на вальце жидкость, стекает с его поверхности на лоток. При этом максимально исключается попадание капель раствора гербицида на культурные растения и почву.

Заключение

Предлагаемые организационно-технические запатентованные решения, способствуют повышению «экологической чистоты» и экономической эффективности выполнения технологических операций (опрыскивания посадок клюквенника, нанесения раствора гербицида на сорную растительность) на клюквенном чеке промышленной плантации.

Литература

- 1. Сайганов, А.С. Система показателей по оценке новых средств механизации / А.С. Сайганов // Научно-инновационная деятельность и предпринимательство в АПК: проблемы эффективности и управления: сб. науч. статей 2-й Междунар. науч.-практ. конф., Минск, 17 18 мая 2007 г. в 2 ч. / Белорус. гос. аграрн. технич. ун-т; редкол.: Г.И. Гануш [и др.] Минск, 2007. С. 102 104.
- 2. Методические рекомендации по определению эффективности научно-технической продукции (завершенных НИОКР) в АПК. М.: ВНИИЭСХ, 2004. 41 с.
- 3. Опрыскиватель : пат. 13260 Республики Беларусь на изобретение. МПК(2009) А01М7 / 00 / Л.В. Мисун, В.Л. Мисун, В.А. Агейчик, С.В. Жилич, В.М. Грищук, С.В. Поляк; заявитель Белорус. гос. аграрн. технич. ун-т. № и 20080189; заявл. 21.02.2008; опубл. 30.06.2009 // Афіцыйны бюл. / Нац. центр інтэлектуал. уласнасці, 2009. № 3. С. 45-46.
- 4. Устройство для контактного внесения гербицидов, агрегатируемое с мотоблоком: пат. 12722 Республики Беларусь на изобретение, МПК (2009) А 01 С 7/00; А 01 М 7/00/ Л.В. Мисун, В.Л. Мисун, В.А. Агейчик; заявитель Белорус. гос. аграрн. технич. ун-т. № а 20070620; заявл. 24.05.07; опубл. 30.12.2009 // Афіцыйны бюл. / Нац. цэнтр інтэлектуал. уласнасці. 2009. № 6. С. 38 39.

УДК 631.363

ТЕОРЕТИЧЕСКОЕ ИССЛЕДОВАНИЕ МОЩНОСТИ ПРИВОДА ВАЛЬЦОВОЙ ДРОБИЛКИ

Шило И.Н., д-р техн. наук, профессор, Савиных В.Н., канд. техн. наук, Воробьёв Н.А., канд. техн. наук, доцент, Гуд А.В. (БГАТУ)

Введение

Одной из наиболее важных задач при анализе энергоемкости измельчения фуражного зерна дробилкой является описание аналитического выражения по определению мощности, затрачиваемой на ее привод. Известные в настоящее время зависимости по определению мощности привода вальцовых дробилок фуражного зерна, не учитывают в совокупности: параметры рифленой поверхности вальцов, режимы работы машин и физико-механические свойства зернового материала.

Основная часть

На основании анализа процесса дробления фуражного зерна была предложена теория, согласно которой вся затрачиваемая мощность делиться на: резание зерновки рифлями быстро вращающегося вальца; преодоление сил сжатии зерновки вальцами; преодоление сил трения зернового материала о вальцы. На рисунке 1 показаны силы, возникающие при дроблении зерновки вальцами с рифленой рабочей поверхностью.

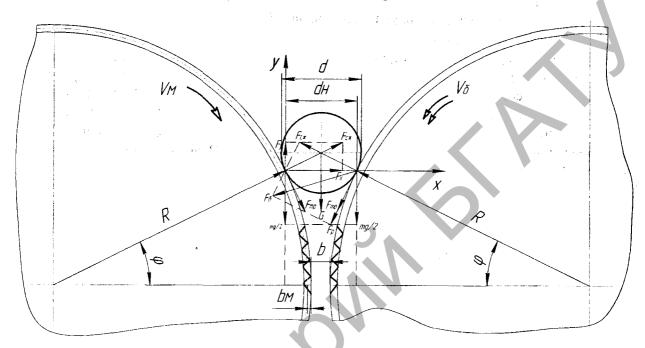


Рисунок 1 - Силы, приложенные к зерновке при захвате вальцами в начальный период

Следовательно, запишем:

$$N = N_{\dot{\partial}} + N_{\tilde{n}\alpha} + N_{\dot{\partial}\dot{\partial}},\tag{1}$$

где N_p – мощность, необходимая на осуществление процесса резание быстро вращающимся вальцом, Вт;

 $N_{cж}$ – мощность, необходимая на осуществление процесса сжатия вальцами, Вт;

 N_{mp} — мощность, необходимая для преодоление сил трения, Вт.

Составляющей N_{mp} можно пренебречь, учитывая ее малость по сравнению с мощностью на резание и сжатие зерновки ($N_{\dot{\sigma}\dot{\sigma}}$ \square $N_{\dot{\sigma}\dot{\sigma}}$ \square $N_{\dot{n}\dot{c}}$).

На основании теории обработки металлов фрезами [1,2] было получено выражение для определения мощности, необходимой на осуществление процесса резания быстро вращающимся вальцом:

$$N_{\delta} = \frac{\delta \cdot \pi \cdot D \cdot L \cdot \left(d - \left(b + b_{i}\right)\right) \cdot \left(\sin \varphi - \sin \varphi_{0}\right) \cdot \arccos\left(1 - \frac{d - b}{D}\right)}{360 \cdot c} \cdot V_{\delta}, \tag{2}$$

где p_p – удельное давление резания рифлями быстро вращающегося вальца, ${
m H/m}^2$;

D – диаметр быстро вращающегося вальца, м;

L – длина рабочей части вальца, м;

d – диаметр зерновки, м;

b – величина межвальцового зазора;

 $b_{\rm M}$ – приращение межвальцового зазора со стороны рифленой поверхности медленно вращающегося вальца, м;

Мощность, необходимая на осуществление процесса сжатия вальцами можно представить выражением:

$$N_{cm} = 2\mu \cdot F_{cm} \cdot V_{M}, \tag{3}$$

где F_{cx} – равнодействующая сила сжатия вальцами, H;

 $V_{\scriptscriptstyle M}$ — скорость медленно вращающегося вальца, м/с;

 μ — коэффициент трения.

Для нахождения равнодействующей силы сжатия необходимо определить ее горизонтальную и вертикальную слагающие. Установление аналитического выражения горизонтальной составляющей сводится к определению площади сжатия в поперечном сечении вальца, которая зависит от параметров рифленой поверхности и режимов работы дробилки (рисунок 2). Величина ее определяется как разность между площадью сжатия возникающей при отношении между окружными скоростями вальцов i=1 и площадью среза быстро вращающимся вальцом.

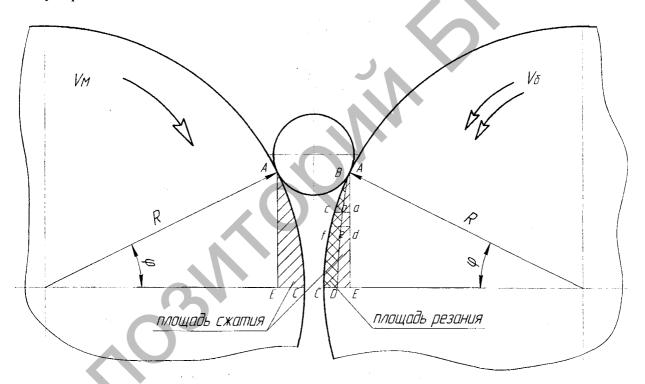


Рисунок 2 - Графическое представление площадей сжатия и резания

Вертикальная слагающая равнодействующей силы:

$$F_{y} = \frac{4LE}{d\mu} \int_{0}^{\frac{d\mu + b}{2}} \left(\frac{d\mu - b}{2} - x + \frac{x}{2} \right) dx = \frac{4LE}{d\mu} \left(\frac{d\mu - b}{2} \right)^{2} = \frac{LE}{d\mu} (d\mu - b)^{2}$$
 (4)

Горизонтальная слагающая равнодействующей силы:

$$F_{x} = \frac{2E \cdot L}{d\mu} S_{BCD} = \frac{2E \cdot L}{d\mu} \left(\frac{D^{2} \pi \varphi}{4 \cdot 180} - \frac{D^{2} \sin \varphi \cos \varphi}{4} - \frac{\pi \cdot D \cdot \varphi \cdot i \cdot S_{nn}}{360 \cdot c} \right)$$
 (5)

С учетом (2,3,4,5) выражение расчета мощности, затрачиваемой на сжатие и резание, имеет вид:

$$N = \frac{p \cdot \pi \cdot D \cdot L \cdot (d - (b + b_{M})) \cdot (\sin \varphi - \sin \varphi_{0}) \cdot \arccos\left(1 - \frac{d - b}{D}\right)}{360 \cdot c} \cdot V_{\delta} + F_{r} \cdot \frac{V_{\delta}}{i} \cdot arctg \frac{F_{y}}{F_{x}}$$
(6)

Данное выражение описывает затраты мощности привода дробилки с допущением, что измельчаемый материал поступает в межрифленое пространство непрерывным потоком. В реальных условиях зерновой материал, поступающий на дробление, характеризуется коэффициентом заполнения.

√07 : . - 11 - 1

Заключение

Установленное аналитическое выражение позволяет определять затраты мощности на измельчение зернового материала вальцовой дробилкой в зависимости от параметров рифленой поверхности, режимов работы машины и физико-механических свойств измельчаемого материала.

Литература

- 1. <u>Пикус, М. Ю.</u> Справочник фрезеровщика / М. Ю. Пикус, И. М. Пикус. Минск : Вышэйшая школа, 1975. С 302.
- 2. <u>Резников, Н. И.</u> Теория резания металлов / Киев. Харьков : Гос науч.-тех. изд-во Украины, 1934. 336 с.

УДК 631.356.46.02 -52

ПОВЫШЕНИЕ ТЕХНИЧЕСКОГО УРОВНЯ САМОХОДНЫХ КАРТОФЕЛЕУБОРОЧНЫХ МАШИН

Романюк Н.Н., к.т.н., доцент, Астрахан Б.М., к.т.н., доцент, Клавсуть П.В. (БГАТУ)

В Республике Беларусь взято направление на дальнейшую модернизацию картофелеводческой отрасли. К 2015 г. АПК должен увеличить производство картофеля в 2 раза. Планируется более 80% картофеля в общественном секторе сконцентрировать в условиях круппотоварных организаций с площадью посадок 300...500 га при средней урожайности картофеля до 350 ц/га [1]. Этим будут созданы экономические условия для рентабельного применения высокотехнологичных картофелеуборочных машин.

В программе ведущих производителей имеются высокотехнологичные, как правило, самоходные картофелеуборочные машины. Например, из выпускаемых типов машин фирмы Grimme до 30% — самоходные [2]. В РБ также поставлена задача обеспечения картофелеводческой отрасли высокопроизводительными самоходными картофелеуборочными машинами [1] и уже испытаны образцы четырехрядного копателя-погрузчика, агрегатируемого с универсальным энергетическим средством "Палессе" ПО «Гомсельмаш» и самоходного комбайна ККС-2 [3].

Для современных уборочных машин характерно наличие гидравлических и электрических силовых регулируемых приводов достаточной мощности, бортовыми компьютерами с функциями контроля и управления. В последние годы в европейских