Тип элемента	Количество элементов в устр. (Ni)	λ _i x 10 ⁻⁶ 1/ч	λ _i x N _i x 10 ⁻⁶ 1/ч	
Транзистор FDV304P	5	0,058	0,29	
КМОП	1 1	0,058	0,058	
FMMTA	2	0,058	0,058	
BSP89	11	0,058	0,638	
Стабилитрон DZ23C5	3	0,0038	0,0114	
Диод LL4148	6	0,024	0,144	
Транз.сборка BC857BS	2	0,043	0,086	
Светодиод GNL	2	0,45	0,9	
Диодная сборка ВАТ54С	4	0,0085	0,034	
Кнопка SWT	4	0,024	0,96	
Батарея литиевая ER34615	1	0,431	0,431	
Соединитель WF	5	0,02	0,1	
ВН	2	0,02	0,04	
Разъем DBI	2	0,02	0,4	

Суммарная интенсивность отказов ЭРЭ, примененных в составе счетчика газа СГУ001G16, составляет $\Lambda = 5,5684 \times 10^{-6}$ l/ч.

Наработка на отказ счетчика газа БУГ-01, рассчитанная по формуле (1), составляет To = 179584 ч.

Выводы.

Расчетное значение наработки на отказ счетчика газа БУГ-01 не ниже заданного значения (55 000 ч), согласно п.1.10 ГОСТ 27.410 - 87 принимается решение о соответствии по-казателя надежности — наработки на отказ счетчика газа заданным требованиям, что обеспечивает МПИ 6 лет.

УДК 631.243.3: 631.371

ИЗУЧЕНИЕ ПРОЦЕССА СУШКИ ЗЕРНОВЫХ КУЛЬТУР И ПУТИ ЕГО СО-ВЕРШЕНСТВОВАНИЯ

Климкович П.Н магистр техн. наук

УО «Белорусский государственный аграрный технический университет» г. Минск. Республика Беларусь

Сушка — это сложный процесс одновременно тепло- и массообмена, а также технологический процесс, при проведении которого должны быть сохранены не только исходные свойства материалов, но в ряде случаев даже улучшены

С целью обеспечения продовольственной безопасности страны, в соответствии с государственной программой возрождения и развития села планируется довести урожай зерновых до 10 млн.т. Наряду с этим увеличивается и производительность выпускаемых зерносущильных комплексов. Однако стоит отметить, что рост производительности не всегда пропорционален энергопотребление. Например СЗК-10Г (производительность по сырому зерну при снижении влажности с 20 до 14%, 10 т/ч), имеет установленную мощность электродвигателей 40,4кВт, теплогенератора 0,8МВт. В свое время ЗСК-40Г с производительность 40 т/ч, мощность теплогенератора 4 МВт, удельный расход электроэнергии при этом 250 кВт.

Следует отметить, что в процессе переработки зерновых культур около 70% энергии расходуется на сушку и очистку зерна. Потребляемая мощность отечественных комплексов на порядок выше зарубежных аналогов. С учетом сложившейся ситуации проводятся исследования по снижению энергозатрат ЗСК на основе оптимизации энергетических процессов. С этой целью разработана методика проведения исследований режимов работы различных

типов ЗСК. В соответствии с этой методикой проводится сбор первичной информации на основе энергетических аудитов ЗСК, обработка результатов и анализ энергоэкономических показателей. Наряду с этим предусматривается разработка энергетических балансов ЗСК с их последующей оптимизацией.

В связи с этим стоит задача анализа и обоснования различных способов энергообеспечения зерноочистительно-сушильных комплексов и оптимизация режимов энергопотребления с целью снижения расходов энергоресурсов.

Установлено что КПД зерносущилки представлено зависимостью:

$$\eta_t = (t_2 - t_1)/(t_2 - t_0)$$

где: t0-температура наружного воздуха;

- t1 -температура воздуха на входе в сущилку;
- t2 -температура воздуха на выходе из сущилки;

Суммарный расход теплоты ΣQ (Кдж/ч) в зерносущилке можно представить следующим выражением:

$$\Sigma Q = Q_1 + Q_2 + Q_3 + Q_4 + Q_5 + Q_5$$

где Q1 — затраты теплоты на испарение влаги; Q2 — потери теплоты на нагрев зерна; Q3 — потери теплоты с отходящими газами (с отработавшим агентом сушки); Q4 — потери в окружающую среду (через нагретые поверхности); Q5 — потери теплоты на нагрев транспортных средств; Q6 — потери теплоты в следствии неполного сгорания топлива (от химического и механического недожога). Удельные значения составляющих данного выражения представлены в табл.1.

Таблица – 1. Удельная доля затрат и потерь теплоты (%) на сушку в зерносушилке.

	Доля теплоты		
	от общей	от непроиз-	
Статьи теплового баланса	суммы за-	водитель-	
	трат и по-	ных потерь	
•	терь		
1.Затраты на испарение влаги (термический КПД)	53,2		
2. Потери теплоты на нагрев зерна	15	32	
3. Потери теплоты с отработавшим агентом сушки	23,9	51,1	
4. Потери теплоты в окружающую среду	6,9	14,7	
5. Потери теплоты на химический и механический недожог	1	2,2	
Итого:			
затрат и потерь	100		
потерь	46,8	100	

Анализ данных показывает, что для увеличения пс (КПД сушки) необходимо увеличить долю затрат теплоты на испарение влаги Q1. Наибольшее значение потерь имеют потери теплоты с отработавшим агентом сушки Q3 51,1% всех потерь.

В качестве примера можно привести результаты изучения опыта использования ЗСК-40Г на предприятии ОАО «Октябрьская революция». В таблице 2 приведены значения температур нагретого, отработанного теплоносителя и в 1-ой секции каждой из шахт зерносушилки за период сушки партии фуражного ячменя в ночную смену.

Таблица – 2. Значения температур в различных зонах зерносущилки.

<u> 1ца – 2. эначе</u>	ща – 2. Значения температур в различных зонах зерносушилки.									
Время изм.	Темп.	Температура.		Температура. от-		Разница тем- ператур				
	нар. в оз-	нагретого теп-		работанного теп-						
	духа t ₀	лоносителя. t ₁		лоносителя. t ₂						
t, мин.	ိုင	1-й ⁰ С	2-й ⁰ С	1-я ⁰ С	2-я ⁰ С	1-я ⁰ С	2-я ⁰ С			
22,00	14	91	84	33	33	19	19			
22,15	14	91	85	35	35	21	21			
22,30	14	84	78	35	35	21	21			
22,45	14	92	85	36	36	22	22			
23,00	14	92	85	37	37	23	23 -			
23,15	14	8 8	81	37	37	23	23			
23,30	13	6 5	85	38	35	25	22			
23,45	13	93	85	37	34	24	21			
00,00	13	77	70	37	35	24	22			
00,15	12	83	77	36	36	24	24			
00,30	12	86	80	37	35	25	23			
00,45	12	38	31	38	36	26	24			
1,00	12	18	18	36	34	24	. 22			
1,15	12	15	15	33	31	21	19			
1,30	12	98	91	29	29	17	17			
1,45	12	95	89	37	27	25	15			
2,00	12	93	86	31	31	19	19			
2,15	12	94	86	35	33	23	21			
2,30	12	93	86	38	35	26	23			
2,45	12	93	85	41	35	29	23			
3,00	12	93	86	43	35	31	23			
3,15	12	94	85	44	34	32	22			
3,30	12	74	67	42	34	30	22			
3,45	12	25	25	38	32	26	20			
итого ср:	12,6	77,7	72,7	36,8	33,9	24,1	21,3			

Из таблицы видно, что при среднем значении температуры наружного воздуха за период сушки в 12,6 °C температура отработанного теплоносителя составляет 36,8 и 33,9 °C соответственно. Для уменьшение этих потерь целесообразно использовать рекуперацию тепла отработавших газов. Возможен вариант использования теплоутилизатора. Известно, что современные теплообменники имеют КПД 60% и более, а использование отработавшего сушильного агента напрямую нерационально из-за его переувлажнения.

Проанализировав полученные данные предлагается использовать схему рекуперации приведенную на рис.1 в замен существующей.

Оптимизацию же процесса сушки целесообразно проводить не по отдельным менее или более значимым параметрам, а в комплексе. Только полное и всестороннее исследования позволит наилучшим образом смоделировать процесс сушки с последующей оптимизацией.

С учетом выше изложенного, в дальнейшем будет проведен анализ различных способов энергоснабжения ЗСК, разработка методов оптимизации энергопотребления, экономическое обоснование и разработка агротехнических требований, а также обоснование рациональных способов энергообеспечения и энергопотребления ЗСК, что позволит снизить энергоемкость производства зерна не менее чем на 15-20%.

ЛИТЕРАТУРА

- 1. М.Ю. Серегин, Организация и технология испытаний. Изд-во ТГПУ, Тамбов, 2006. 83с.
- 2. Олейников В.Д., Кузнецов В.В. «Агрегаты и комплексы для послеуборочной уборки зерна» М.: Колос, 1977 109с.
- 3. ГОСТ 27.502-83. Надежность в технике. Система сбора и обработки информации. Планирование наблюдений; Введ. 26.07.83. М.: Изд-во стандартов. 23 с
- 4. Русан В.И. Энергетическая ситуация и основные направления эффективного энергообеспечения АПК. Аналитический обзор., Мн. РУП «БНИВНФХ в АПК», 2003 – 55с.
- 5. Руководство по эксплуатации СЗК-10.00.00.000-01 РЭ Мн: ОАО «Амкодор», 2005 65с.
 - 6. Руководство по эксплуатации ЗСК-40.00.00.00 РЭ Мн: ОАО «Амкодор», 2010 69с.

УЛК: 537.8:621.762.55

СПОСОБ ПРОИЗВОДСТВА ЭЛЕКТРОНАГРЕВАТЕЛЬНЫХ ЭЛЕМЕНТОВ ИЗ ХИМИЧЕСКИ АКТИВНЫХ И ПАССИВНЫХ ЭЛЕКТРОПРОВОДНЫХ ПОРОШКОВЫХ СМЕСЕЙ

Демидков С.В., к.т.н., Коротинский В.А., к.т.н., Запкевич В.А., к.физ.-мат.н., Винатовская М.А., Коральчук Ю. Ю. УО «Белорусский государственный аграрный технический университет» г. Минск. Республика Беларусь

Используемые в настоящее время для обогрева помещений и обеспечения теплом технологических процессов на производстве нагревательные керамические элементы получают путем прессования порошковых материалов с последующим спекание в печах.

В данном способе производстве нагревательных керамических элементов используется устройство для центробежного формования порошков [1] включающее вращающийся корпус, снабженный загрузочной полостью, в котором расположены радиальные питатели, матрицы, оправки матриц, заглушек и перегородок. В загрузочную полость подают порошок, который под действием центробежных сил поступает в пространство между стенками мат-