Таблица 2 - Зависимость коэффициентов несимметрии от числа витков в СУ и тока в нулевом проволе

Two made 2 Submitted to the company of the company					
Режим		<i>W</i> ,шт	I_0 ,A	K_{2U} , %	K_{0U} , %
без СУ		-	11,5	3,04	3,12
с СУ		60	3,2	1,47	1,51
с СУ		90	1,3	1,18	1,17

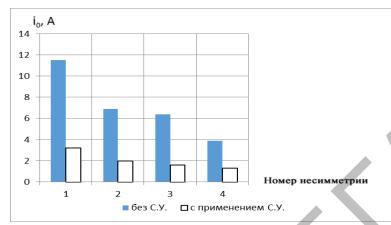


Рисунок 2 -Диаграмма зависимости силы тока в нулевом проводе от режима нагрузки без СУ и с ним

Таблица 3 - Зависимость коэффициентов несимметрии напряжений от режима нагрузки без СУ и с ним от числа витков.

Режим	<i>W</i> , шт	$I_{a,}A$	I_b ,A	I_c ,A	K_{2U} , %	K_{0U} , %
без СУ	-	13,8	2,3	1,5	3,04	3,12
с СУ	60	5,9	2,9	2,3	1,47	1,51
с СУ	90	4,5	2,9	2,5	1,18	1,17

Новое симметрирующее устройство автоматически перераспределяет нагрузки по фазам. Это приводит к улучшению не только коэффициента несимметрии по нулевой последовательности, но и коэффициента несимметрии напряжений по обратной последовательности.

Литература

- 1. Янукович Г. И. и др. Устройство для симметрирования напряжения при несимметричной нагрузке фаз. Патент на изобретение № 16121, РБ, 27.09.2010.
- 2. ГОСТ 13109-97. Нормы качества электрической энергии в системах электроснабжения общего назначения. Введ. 08.01.1999. М.: Изд-во стандартов, 1998. 31 с.

УДК 621.316.9

О РАСЧЕТЕ ЗОН ЗАЩИТЫ АКТИВНЫХ МОЛНИЕПРИЕМНИКОВ

Счастный В.П.¹, к.т.н., доцент, **Зеленькевич А.И.**², ст. преподаватель 1 ЧТПУП «СВП-энерго»

²Белорусский государственный аграрный технический университет

В связи с бурным применением электроники и микропроцессорной техники во всех областях народного хозяйства остро стоит вопрос о защите данного оборудования от перенапряжений различной природы. В 2011 году вступил в действие ТКП 366-2011 «Молниезащита зданий, сооружений и инженерных коммуникаций». Хотя данный документ и вызывает много нареканий [1,2], но он является обязательным для исполнения на территории Республики Беларусь и предъявляет единые требования к объектам молниезащиты.

В последнее время в странах СНГ и, в частности, в Беларуси некоторыми фирмами активно продвигаются устройства активной молниезащиты («молниезащита с системой ранней стримерной эмиссии», «Early Streamer Emission System» и др.) [3,4,5,6,7]. Приводятся достоинства данных устройств, примеры их применения, расчеты зон защиты.

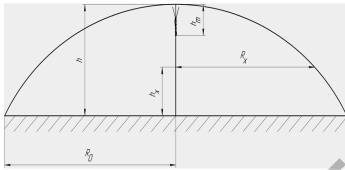


Рисунок 1 – Зона защиты одиночного стержневого активного молниеотвода:

 h_x - высота защищаемого объекта, м; R_x - радиус зоны защиты объекта на высоте, м; h - высота до вершины молниеотвода, м; h_m - высота молниеотвода, м; R_0 - радиус зоны защиты объекта на уровне земли, м; K - коэффициент, полученный экпериментально

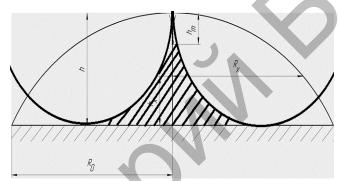


Рисунок 2 – Зона защиты одиночного стержневого молниеотвода

Рассмотрим рисунок 1, поясняющий расчет зоны защиты активного молниеотвода М-200, разработанного финансово-промышленной компанией «Космос–Нефть–Газ, предназначенного для защиты объектов бытового и промышленного назначения от прямого поражения молнией [4].

Расчёт зон защиты производится по формулам:

$$R_0 = \sqrt{\frac{h}{K}}; \ R_x = \sqrt{\frac{h - h_x}{K}}.$$

Таблица 1 – Радиусы защищаемой зоны в зависимости от высоты установки молниеотвода и надёжности защиты

	$ m P$ адиус защиты $ m R_0$, м					
h, м	Уровень 1	Уровень 2	Уровень 3			
II, M	вероятность защиты	вероятность защиты	вероятность защиты			
	P=0,995; K=0,01	P=0,98; K=0,005	P=0,95; K=0,003			
2	14	20	26			
3	17	25	32			
4	20	28	37			
6	25	35	45			
8	28	40	52			
10	32	45	58			
15	38	55	71			
20	45	63	82			
30	55	78	100			
40	63	89	115			

В таблице 1 приведены радиусы защищаемой зоны в зависимости от высоты установки молниеотвода и надёжности защиты, определенные по приведенным выше формулам.

Проведем расчет зоны защиты этого же молниеотвода электрогеометрическим методом в соответствии с пунктом 7 ТКП 336-2011.

Зона защиты одиночного стержневого молниеотвода приведена на рисунке 2 и представляет собой заштрихованный конус. Результаты расчета занесем в таблицу 2.

Как видно из таблиц, зона защиты молниеотвода определенная по ТКП 336-2011 на порядок меньше, чем заявленная изготовителем.

Применение активных молниеприемников на территории Республики Беларусь вызывает большие сомнения. Зону защиты активного молниеприемника следует определять по ТКП 336-2011 как для обычного стержневого молниеотвода.

Таблица 2 – Радиусы защищаемой зоны в зависимости от высоты установки молниеотвода и надёжности защиты

		п падежности защиты			
h, м	Радиус защиты R ₀ , м				
	Уровень I	Уровень II	Уровень III		
	вероятность защиты Р=0,9;	вероятность защиты Р=0,99;	вероятность защиты Р=0,999;		
	r=20 м	r=30 м	r=45 м		
2	0,1	0,07	0,05		
3	0,23	0,15	0,1		
4	0,4	0,27	0,18		
6	0,92	0,6	0,4		
8	1,67	1,08	0,71		
10	2,69	1,71	1,12		
15	6,77	4,02	2,57		
20	20	7,63	4,68		
30	-	30	11,45		
40	-		24,37		

Литература

- 1. Левин, А.Л. О выполнении требований ТКП 366-2011 «Молниезащита зданий, сооружений и инженерных коммуникаций» // Энергия и менеджмент. 2012. №1(64) с. 28.
- 2. ТКП 366-2011 «Молниезащита зданий, сооружений и инженерных коммуникаций»: кто поставит точку? // Энергия и менеджмент. 2012. №1(64) с. 26-27.
- 3. Активная молниезащита Prevectron 2 Millenium Режим доступа: http://www.elmora-m.com/events/article_1/ Дата доступа:23.09.2014.
- 4. Активный молниеотвод M-200 Режим доступа: http://www.kng.ru/prod.php#11 Дата доступа: 23.09.2014.
- 5. Активная молниезащита Режим доступа: http://gromostar.ru/aktivnaya_molniyezashchita Дата доступа: 23.09.2014.
- 6. Молниезащита зданий и сооружений по новым технологиям Режим доступа : http://www.zazemlenie.by/molniezashita Дата доступа: 23.09.2014.
- 7. Как функционирует активный молниеотвод Режим доступа: http://www.schirtec.at/ru /как-функционирует-активный-молниеотвод.html Дата доступа: 23.09.2014.