УДК 621. 825. 6 МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ КОРМОУБОРОЧНОГО АГРЕГАТА

Гурнович Н.П., к.т.н., доцент, Ходасевич В.И., к.т.н., доцент, Портянко Г.Н., к.т.н., доцент, Гурнович М.Н., инженер

УО Белорусский государственный аграрный технический университет г. Минск, Республика Беларусь

Кормоуборочный агрегат представляет собой систему с распределенными параметрами, имеющую бесконечное число степеней свободы. Динамическая модель, эквивалентная агрегату, представляет собой систему, составленную из абсолютно жестких масс, соединенных безинерционными податливостями и сцеплениями, динамика которой мало чем отличается от динамики реального агрегата. При составлении динамической модели вращающиеся массы учитываются соответствующими моментами инерции и податливости всех элементов сводятся в упругие звенья. Вся динамическая модель агрегата в нашем случае состоит из динамической модели трактора МТЗ 1221 «Беларус» и динамической модели прицепного кормоуборочного комбайна КДП-3000 с платформенной жаткой для уборки высокостебельных культур. Динамическая модель кормоуборочного комбайна с жаткой для уборки высокостебельных культур представлена в виде сорока масс и она нуждается в упрощении. Приведение моментов инерции и податливостей, выполняем из условия сохранения кинетической и потенциальной энергии исходной и приведенной систем к ведущему валу привода режущего аппарата. Это условие оказывается выполненным, если расчет произвести по формулам [1]:

$$I_{np} = \frac{I}{i^2}; \quad e_{np} = e \cdot i^2,$$
 (1)

где i — передагочное отношение от приводного вала к валу приведения; I_{np} , e_{np} — соответственно величины момента инерции и податливости после приведения; e — соответственно величины момента инерции и податливости до приведения.

В результате этих операций получена динамическая модель агрегата в виде системы масс со сосредоточенными параметрами. Упрощение исходной динамической системы модели агрегата проведено с использованием метода Е.И.Ривина. В результате проведенных упрощений получена динамическая система, состоящая из семи масс, представлена на рисунке 1.

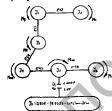


Рисунок 1 – Приведенная динамическая модель агрегата.

В данной динамической системе активными движущими силами является движущий момент, передаваемый от двигателя на рабочие органы.

Кроме приводного момента в агрегате действуют и моменты сопротивления:

 M_c – момент сопротивления от перекатывания всех поступательно движущихся масс агрегата;

$$M_{c} = f \cdot G, \qquad (2)$$

где f – коэффициент сопротивления перекатыванию агрегата; G – вес агрегата.

 M_{δ} — момент сопротивления, возникающий в измельчающем аппарате. Численное значение этого момента определялось из осциллограммы.

$$M_6 = M_{61} + \Delta M_6 \,, \tag{3}$$

где ΔM_{6} - неравномерность загрузки измельчающего аппарата, возникающая от условий работы, урожайности и других объективных факторов. M_{6} - момент сопротивления, возникающий в питательном аппарате, $M_{a}=M_{al}+\Delta M_{a}$. M_{6} - определялся из осциллограммы. M_{ul} - момент сопротивления шнека, $M_{ul}=M_{ull}+\Delta M_{ull}$. M_{MOM} - момент сопротивления мотовила, $M_{MOM}=M_{Mom}$.

В таблице представлены значения приведенных к ведущему валу привода режущего аппарата моментов инерции масс и приведенных податливостей.

Таблица – Значения приведенных к ведущему валу привода режущего аппарата моментов инерший и податливостей

Моменты инерции,	I_{l}	I_2	I_3	14	I_5	I_6
Hm ²	613,0	441,0	511,1	24,0	1,55	0,122
Податливость, 1/Нм	e_1	e ₂	е 3	e,	e5	e ₆
10-5	1,31	1,07	2,38	4,65	69,5	9,56

Полученная семимассовая система описывается системой из семи уравнений Лагранжа II рода. Уравнения Лагранжа второго рода для системы с *п* степени свободы имеет вид:

$$\frac{d}{dt} \cdot \left(\frac{dT}{d\omega} \right) - \frac{d}{d\omega} (T - U) = G_n, \tag{4}$$

где n=1, 2, 3 — число степеней свободы, в нашем случае n =7. φ_n — угол поворота масс; G_n — обобщенные силы; T — кинетическая энергия динамической системы; U — потенциальная энергия динамической системы.

Кинетическая энергия T и потенциальная U динамической системы определяется по выражениям:

$$T = \frac{I_1 \cdot (\dot{\varphi}_1)^2}{2} + \frac{I_2 \cdot (\dot{\varphi}_2)^2}{2} + \dots + \frac{I_n \cdot (\dot{\varphi}_n)^2}{2}; \ U = \frac{c_1(\varphi_1 - \varphi_2)^2}{2} + \frac{c_2(\varphi_2 - \varphi_1)^2}{2} + \dots + \frac{c_{n-1}(\varphi_{n-1} - \varphi_n)^2}{2}.$$
(5)

Подставляя значение кинетической и потенциальной энергии в уравнения Лагранжа II рода, получим систему уравнений:

1а, получим систему уравнении:
$$I_{1}\ddot{\varphi}_{1} = M_{JB} - c_{12}(\varphi_{1} - \varphi_{2}) - c_{13}(\varphi_{1} - \varphi_{2}) - k_{12}(\dot{\varphi}_{1} - \dot{\varphi}_{2}) - k_{13}(\dot{\varphi}_{1} - \dot{\varphi}_{3});$$

$$I_{2}\ddot{\varphi}_{2} = c_{12}(\varphi_{1} - \varphi_{2}) + k_{12}(\dot{\varphi}_{1} - \dot{\varphi}_{2}) - M_{c};$$

$$I_{3}\ddot{\varphi}_{3} = c_{13}(\varphi_{1} - \varphi_{3}) + k_{13}(\dot{\varphi}_{1} - \dot{\varphi}_{3}) - c_{34}(\varphi_{3} - \varphi_{4}) - k_{34}(\dot{\varphi}_{3} - \dot{\varphi}_{4}) - M_{6};$$

$$I_{4}\ddot{\varphi}_{4} = c_{34}(\varphi_{3} - \varphi_{4}) + k_{34}(\dot{\varphi}_{3} - \dot{\varphi}_{4}) - c_{45}(\varphi_{4} - \varphi_{5}) - k_{45}(\dot{\varphi}_{4} - \dot{\varphi}_{3}) - M_{e};$$

$$I_{5}\ddot{\varphi}_{3} = c_{45}(\varphi_{4} - \varphi_{3}) + k_{45}(\dot{\varphi}_{4} - \dot{\varphi}_{5}) - c_{56}(\varphi_{5} - \varphi_{6}) - k_{56}(\dot{\varphi}_{5} - \dot{\varphi}_{6}) - c_{57}(\varphi_{5} - \varphi_{7}) - k_{57}(\dot{\varphi}_{5} - \dot{\varphi}_{7}) - M_{w};$$

$$I_{6}\ddot{\varphi}_{6} = c_{56}(\dot{\varphi}_{5} - \dot{\varphi}_{6}) - k_{56}(\dot{\varphi}_{5} - \dot{\varphi}_{6}) - M_{\text{nom}};$$

$$[I_{7} + (I_{7}' + I_{7}'' \frac{A^{2} \cos^{2} \gamma}{B^{2}})]\ddot{\varphi} - \left\{ \begin{bmatrix} I_{7}' + I_{7}'' \frac{A^{2} \cos^{2} \gamma}{B^{2}} \\ I_{7}'' + I_{7}'' \frac{A^{2} \cos^{2} \gamma}{B^{2}} \\ \end{bmatrix} \frac{(g^{2} \delta \sin 2\varphi_{7}(1 + \sin^{2} \delta \cos^{2} \varphi_{7}) + I_{7}'' \frac{A \sin(\varphi - \psi)\cos^{2} \gamma}{B^{2}} \times \left\{ (gyctg\mu + \frac{2AC}{B}) \cdot \left\{ \frac{1g\delta \cos \varphi_{7}}{1 + tg^{2} \delta \sin^{2} \varphi_{7}} \right\}^{3} \dot{\varphi}_{7} = c_{57}(\varphi_{5} - \varphi_{7}) - k_{57}(\dot{\varphi}_{5} - \dot{\varphi}_{7}) - M_{\pi} \frac{A \cos \gamma}{B}, \right\}$$

$$C = \sin^{2} \gamma \cos(\varphi + \psi) tgyctg\mu. \quad B = \sin^{2}(\varphi + \psi) + \cos^{2} \gamma [\cos(\varphi + \psi) + tgyctg\mu]^{2}.$$

Вывод уравнения Лагранжа II рода для седьмой массы приведен ниже. Уравнение потенциальной энергии для седьмой массы запишется в следующем виде:

The
$$i_{\kappa\omega} = \frac{tg\delta\cos\varphi_{\gamma}}{1+tg^{2}\delta\sin^{2}\varphi_{\gamma}}; \quad \frac{di_{\kappa\omega}}{d\varphi_{\gamma}} = -\frac{tg\delta\sin\varphi_{\gamma}(1+\sin^{2}\delta\cos^{2}\varphi_{\gamma})}{\cos^{2}\delta(1+tg^{2}\delta\sin^{2}\varphi_{\gamma})^{2}}; \quad \frac{di_{k\alpha}}{d\varphi_{\gamma}} = \frac{di_{k\alpha}}{d\alpha}\frac{d\alpha}{d\varphi_{\gamma}} = \frac{di_{k\alpha}}{d\alpha}i_{\kappa\omega}.$$

$$\frac{di_{k\alpha}}{d\alpha} = -\frac{tg\varkappa tg\mu\sin(\alpha+\varphi)\cdot\cos\gamma\left\{\cos\gamma\left\{\cos\gamma\left\{\cos^{2}(\alpha+\varphi)+tg\varkappa tg\mu\right\right\}+\sin^{2}(\alpha+\varphi)\right\}^{2}}{\cos\gamma\left\{\cos\gamma^{2}\left[\cos(\alpha+\varphi)+tg\varkappa tg\mu\right]^{2}+\sin^{2}(\alpha+\varphi)\right\}} - \frac{\left[1+tg\varkappa tg\mu\cos(\alpha+\varphi)\right]\cdot\left\{\cos^{2}\gamma\left[\cos(\alpha+\varphi)+tg\varkappa tg\mu\right]+\left[-\sin(\alpha+\varphi)+2\sin(\alpha+\varphi)\cos(\alpha+\varphi)\right]\right\}}{\cos\gamma\left\{\cos\gamma^{2}\left[\cos(\alpha+\varphi)+tg\varkappa tg\mu\right]^{2}+\sin^{2}(\alpha+\varphi)\right\}} = \frac{\cos\gamma\left\{\cos\gamma^{2}\left[\cos(\alpha+\varphi)+tg\varkappa tg\mu\right]^{2}+\sin^{2}(\alpha+\varphi)\right\}}{\cos\gamma\left\{\cos\gamma^{2}\left[\cos(\alpha+\varphi)+tg\varkappa tg\mu\right]^{2}+\sin^{2}(\alpha+\varphi)\right\}} \times$$

 $\cos \gamma \cos \gamma^{2} [\cos(\alpha + \varphi) + tg \chi t g \mu]^{2} + \sin^{2}(\alpha + \varphi)$ × $\left\{ tg \chi t g \mu + \frac{2(1 + tg \chi t g \mu \cos(\alpha + \varphi))[\sin^{2} \gamma \cos(\alpha + \varphi) - \cos^{2} \chi g \chi t g \mu]}{\cos \gamma^{2} [\cos(\alpha + \varphi) + tg \chi t g \mu]^{2} + \sin^{2}(\alpha + \varphi)} \right\}.$ (10)
Обозначив

Через $A = 1 + \cos(\alpha + \varphi) tg \chi t g \mu;$

 $B = \sin^2(\alpha + \varphi) + \cos^2\gamma[\cos(\alpha + \varphi) + tg\gamma ctg\mu]^2$ и $C = \sin^2\gamma\cos(\alpha + \varphi) - \cos^2\gamma tg\gamma ctg\mu$ получаем уравнение потенциальной энергии для седьмой массы.

$$\frac{dI_{\gamma}}{d\varphi_{\gamma}} = -2I_{\gamma}^{*} \frac{\sin(\alpha + \varphi)\cos^{2}\gamma \cdot A}{B^{2}} \left(ig\gamma c tg\mu + \frac{2AC}{B} \right) \cdot \left(\frac{ig\delta\cos\varphi_{\gamma}}{1 + ig^{2}\delta\sin^{2}\varphi_{\gamma}} \right) - 2 \left(I_{\gamma}^{*} + I_{\gamma}^{*} \frac{\cos^{2}\gamma A^{2}}{B^{2}} \right) \times \frac{tg^{2}\delta\sin^{2}\varphi_{\gamma}(1 + \sin^{2}\delta\cos^{2}\varphi_{\gamma})}{\cos^{2}\delta(1 + tg^{2}\delta\sin^{2}\varphi_{\gamma})^{3}}.$$
(11)

Для решения системы дифференциальных уравнений была разработана программа на ПВМ и получены числовые значения. По результатам расчетов построены графики изменения моментов на ведущем валу привода режущего аппарата, ведущем и ведомом валах колебателя (рисунок 2). В результате анализа приведенных на графиках зависимостей можно сделать следующие выводы: подбором параметров универсального шарнира можно добиться существенного снижения размаха моментов инерции масс, при этом снижаются крутящие моменты на ведущем и ве- домом валах колебателя и ведущем валу привода режущего аппарата. Так при $\gamma = 30^\circ$, $\mu = 60^\circ$, $\varphi = 45^\circ$ значения моментов снизились в 1,45 раза на ведущем валу колебателя, в 1,39 раза на ведомом валу колебателя и в 1,45 раза на ведущем валу привода, размах крутящего момента при этом снизился в 1,45. 1,47 и 1,39 раза соответственно.

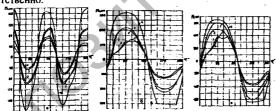


Рисунок 2. – Изменение крутящего момента

а — на валу привода режущего аппарата; б - на ведущем валу колебателя; в - на ведомом валу колебателя. При $\gamma=30^\circ$; $1-\mu=90^\circ$; $2-\mu=80^\circ$; $3-\mu=60^\circ$; $4-\mu=120^\circ$; $5-\mu=60^\circ$; $\varphi=45^\circ$.

Литература

- 1. Ривин Е.И. Динамика привода станков / М.: Машиностроение, 1966. 204 с.
- Барский И.Б., Анилович В.Я., Кутьков Г.М. Динамика трактора / М. Машиностроение, 1973. 280 с.
- 3. Лурье А.Б. Статическая динамика сельскохозяйственных агрегатов /Л.: Колос. 1970.—376с.