- 2.Пикун П. Многолетние бобовые травы: азот для почвы и белок для корма/П. Пикун, М Коротков//Белорусское сельское хозяйство,2011.-№4.- С.12-15.
- 3.Разумовский Н.Травяные корма дешевле и полезнее/Н.Разумовский, И. Пахомов//Белорусское сельское хозяйство,2011.-№4.-С.23-26.
- 4.Валько В.П. Особенности биотехнологического земледелия: монография/В.П.Валько, А.В.Щур. Минск:БГАТУ, 2011.-196с.

УДК 631.243

РАСЧЕТ ПРЕДЕЛЬНОЙ ВЫСОТЫ СЛОЯ СЕМЯН В СЕЛЕКЦИОННОЙ СУШИЛКЕ

Голубкович А.В., д-р техн. наук, Евтюшенков Н.Е., д-р техн. наук, Павлов С.А., канд. техн. наук, Крюков М.Л., вед. инженер Всероссийский научно-исследовательский институт механизации сельского хозяйства» ГНУ ВИМ Россельхозакадемии, Москва, Россия

Аннотация

Снижение неравномерности семян до норм, установленных исходными требованиями ($\pm 1,5\%$) осуществляют различными способами, в том числе перемещением из контейнера в контейнер. Предельная высота слоя h_1 является суммой двух составляющих: при подсушке слоя семян высотой h_1 в первом контейнере с влагосъемом не более 3% и досушке во втором для слоя высотой h_2 при суммарном влагосъеме не более 6%. На основе уравнений теплопереноса в слое семян разработаны приближенные математические модели процесса сушки. Получены выражения для расчета составляющих и предельной высоты слоя. Апробацию полученных выражений проводили в реконструированной селекционной сушилки СЛ-0,3×2 на семенах увлажненной свеклы до 20, 25 и 30 %.

Введение

Для снижения неравномерности сушки используют комплекс мероприятий[1]. В установках периодического действия основное мероприятие — ручное перемешивание через определенные промежутки времени, механизированное перемешивание не вышло за пределы опытных установок [2].

Перемешивание затрудняет обслуживание сушилок, снижает их производительность и не исключает травматизм семян. Альтернативой ручному перемешиванию является пересыпание семян из контейнера в контейнер, например при помощи погрузчика [3, 4]. Пересыпание целесообразно осуществлять, как только в высушенном слое неравномерность сушки достигнет нормативного значения. Для этого необходим расчет предельной высоты слоя, для которого будет достигнута нормативная неравномерность сушки.

Цель работы: расчет предельной высоты слоя семян в контейнере, которая является условием качественной и безопасной сушки.

Основная часть

При вентилировании в слое образуется фронт сушки высотой h_1 , который движется в направлении агента сушки, по достижении на его верхней границе влажности семян 16...17~%, нижней – 13...14~%, подачу агента сушки прекращают, а семена пересыпают в другой контейнер. Примем, что при пересыпании семян порядок расположения слоев меняется на обратный первоначальному без смешивания элементарных слоев. Фронт сушки движется с другой стороны слоя и на высоте h_2 процессе сушки завершается, при этом предельная высота слоя составит $h_1 = h_1 + h_2$, а неравномерность сушки $\pm 1,5~\%$.

Для определения h_1 рассмотрим теплоперенос между агентом сушки и семенами, размещенными в условном канале слоя.

Теплоперенос в слое первого контейнера осуществляется путем конвекции и испарения влаги на элементе поверхности dF [5]:

$$dQ = \delta(i_0 - i)dF, (1)$$

 $\delta = \frac{\alpha}{c}$; α_- коэффициент испарения, $\frac{\delta}{c} = \frac{\alpha}{c}$; α_- коэффициент теплоотдачи, Вт/м².°С; c_- теплоемкость семян, кДж/кг.°С; c_- энтальпия агента сушки и паровоздушной пленки на поверхности семян, кДж/кг.

Этот же тепловой поток равен изменению энтальпии агента сушки на том же элементе поверхности в единицу времени, а значит:

$$dQ = Gdi, (2)$$

Приравняв правые части (1) и (2) окончательно получим:

$$h_1 = \frac{Vd\rho_e}{6(1-\varepsilon)\delta} \ln \frac{i_0 - i_1}{i_0 - i_2}$$
(3)

где i_1 , i_2 — энтальпия паровоздушной пленки семян на входе и выходе канала, кДж/кг; $\rho_{_6}$ — плотность агента сушки, кг/м³; d — эквивалентный диаметр зерновки, м; ε — порозность слоя; V — скорость агента сушки над слоем, м/с.

Для расчета высоты h_2 (второй контейнер) составим математическую модель переноса влаги в слое подсушенных семян, причем в отличии от первого контейнера учтем коэффициент диффузии.

Масса влаги, вынесенной из слоя агентом сушки составит:

$$dM = \frac{a_m \rho (U_0 - U)}{R}, \tag{4}$$

где a_m – коэффициент диффузии, м²/с; ρ – плотность паров влаги, кг/м³; U_0 , U – влагосодержание паровоздушной пленки на

поверхности семян (кг вл./кг сух. мат.) и влагосодержание агента сушки (кг вл./кг сух. возд.); R_{-} радиус зерновки, м.

Тот же поток влаги можно записать в следующем виде:

$$dM = \frac{G_0 dU}{dF},$$
 (5)

где G_0 — масса влаги, вынесенной из слоя, кг/с; $\mathrm{d}F$ — поверхность массообмена, м².

Приравняв правые части (4) и (5) и опуская промежуточные выкладки, запишем:

$$h_2 = \frac{dV}{6a_m(1-\varepsilon)} \ln \frac{U_0 - U_1}{U_0 - U_2},$$
 (6)

где U_1 , U_2 – влагосодержание агента сушки на входе и выходе условного канала, кг вл./кг сух.возд.

При сушке семян повышенной влажности $W \ge_{23}$ % большая часть процесса сушки (от 50%) приходится на первый период и формула (3) достаточно адекватно определяет предельную высоту слоя h_1 и ей можно воспользоваться при анализе процесса сушки.

При сушке слоя во втором контейнере основное влияние на процесс оказывает массопроводность, поэтому вместо $\,\delta\,$ была введе-

 a_m , которая является эквивалентной, так как на процесс сушки влияет ряд факторов, например извилистость канала, теплопроводность, не учтенные при составлении модели.

Экспериментальную проверку расчетных выражений для определения $h_{\rm II}$ проводили при высушивании семян свеклы в контейнерной сушилке, смонтированной на базе селекционной сушилки СЛ-0,3×2 (Рисунок 1). Исходная влажность семян составила 20, 25 и 30%; температура агента сушки – 38-39°C; скорость – 0,4 м/с; порозность – $\mathcal{E}=0,5$; высоту слоя изменяли от 0,12 до 0,46 м. Нерав-

номерность сушки определяли отбором навесок по высоте слоя в течение всего процесса сушки и при разгрузке семян.

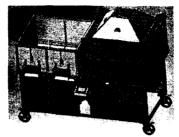


Рисунок 1 - Сушилка комбинированная СЛ-0,3×2

Установлено удовлетворительное совпадение рассчитанных и экспериментальных значений h_1 и h_2 с погрешностью \pm 18 %, при величине $\mathcal{S}_{=3\cdot10^{-3}}$ кг/м²-с и $a_m=0,2\cdot10^{-9}$ м²/с.

Проанализируем полученные выражения (3) и (6). С повышением скорости V величина h_1 несколько возрастает, чем меньше величина W , тем больше величина h_1 . Это обусловлено тем, что величина α , входящая в δ возрастает в меньшей степени относительно скорости V (Рисунок 2).

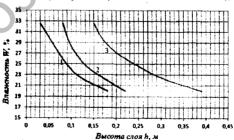


Рисунок 2 – Зависимость высоты слоя $\,h\,$ от влажности семян $\,W\,$

$$1, 2, 3 - h_1, h_2, h_n$$

 $h_2^{}$ возрастет прямо пропорционально $V^{}$ в связи с меньшей интенсивностью поступления влаги из семян. С возраста-

 $\ln rac{i_0-i_1}{i_0-i_2}$, входящая в нием влажности семян снижаются величина

$$\ln \frac{U_0 - U_1}{U_0 - U_2}$$

 $\ln \frac{U_{0}-U_{1}}{U_{0}-U_{2}}$, входящая в (6) и соответственно высо-(3) и величина

 $h_1^{}$ и $h_2^{}$, что и подтверждено в эксперименте.

Заключение

Алгоритм сушки семян, в том числе селекционных в контейнерной сушилке следующий: подсушка при влагосъеме до 3 % в первом контейнере и досушка до суммарного влагосъема в 6 % после перегрузки во втором, при этом как в первом контейнере, так и во втором неравномерность по влажности подсущенных и высушенных семян не превысит \pm 1,5 % при высоте слоя $h \le h_n$. При сушки семян повышенной влажности необходима отлежка, в течение которой будет выровнено поле влажности в зерновке, затем сушку следует продолжить также как и до отлежки до кондиционной влажности.

Контейнерная сушка позволяет отказаться от ручного перемешивания семян при сохранении их качественных показателей.

Литература

- 1. Анискин В.И., Окунь Т.С. Технологические основы оценки работы зерносушильных установок. - М.: ГНУ ВИМ, 2003. - 160 с.
- 2. Гамхошвили Р.М. Обоснование технологических и конструктивных параметров и разработка универсальной установки для сушки селекционных семян: Автореф. дисс. ... канд. техн. наук. -M., 1975. - 22 c.
- 3. Елизаров В.П., Евтюшенков Н.Е., Крюков М.Л., Кахишин Г.А. Контейнерная система для заготовки семян зерновых и зернобобо-

вых культур // Механизация и электрификация сельского хозяйства. — 2014. — $N_{\rm P}$ 1. — C. 10-14.

- 4. Измайлов А.Ю. Технологии и технические решения по повышению эффективности транспортных средств АПК // Патент на «Полезную модель» № 119696-2011 Транспортное средство для перевозки контейнеров // ФГУ «Росинформагротех». М.: 2007. 214 с.
- 5. Данилова Г.Н., Филаткин В.Н. и др. Сборник задач по процессам теплообмена в пищевой и холодильной промышленности. М.: Агропромиздат, 1986. 287 с.

Summary

Decrease in unevenness of drying of seeds up to the standards set by the original requirements (1 1, 5%) carried out in various ways, including moving from container to container. The maximum height of the layer is the sum of two components: the drying of a layer of seeds height of the first container with decrease in humidity not more than 3% and final drying in the second layer height when the total final drying not more than 6%. On the basis of the equations of heat transfer in a layer of seeds developed approximate mathematical model of drying process. Expressions for calculation of components and limit height of a layer are received. Approbation of the obtained expressions held in the reconstructed breeding dryer SL-0, 3 x 2 on the seeds of moistened sugar beet up to 20, 25 and 30%.

УДК 636.2

СОСТОЯНИЕ ПРОИЗВОДСТВА И ПОТРЕБЛЕНИЯ МЯСА КРУПНОГО РОГАТОГО СКОТА

Гриневич Е.В.

УО «Белорусский государственный аграрный технический университет», г. Минск, Республика Беларусь

Аннотация

Анализ состояния в производстве и потреблении говядины в Республике Беларусь свидетельствует о ее значимости в обеспечении потребности населения высококачественными продуктами пи-