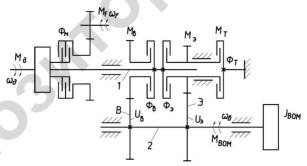
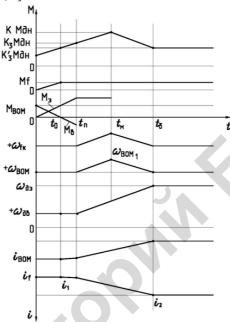
УДК 629.3


АНАЛИЗ ПОТЕРЬ ЭНЕРГИИ ПРИ ПЕРЕКЛЮЧЕНИИ ВАЛА ОТБОРА МОШНОСТИ

А.И. Бобровник, д.т.н., ст.н.с., М.М. Дечко, к.т.н., М.Ф. Аль-Кинани, аспирант

УО «Белорусский государственный аграрный технический университет», г. Минск, Республика Беларусь

В современных тракторах широко применяют переключение передач в коробках передач с различной степенью перекрытия. Для обеспечения перехода на экономичные режимы работы двигателя без разрыва потока мощности предлагается в конструкции трактора «Беларус» класса 5.0 механическое переключение режимов работы экономичного ВОМ заменить переключением с помощью фрикционных муфт (ФМ) с гидроподжатием [1].


Процесс переключения с низкой передачи на экономичную рассмотрим на примере схемы привода редуктора ВОМ с двумя параллельными валами и двумя ФМ (рисунок 1). Важнейшие параметры привода: работа буксования ФМ, время буксования при включении экономичного режима, время разгона на заданном режиме. Расчет этих параметров служит основой для оценки динамических параметров привода и разработки схем оптимального управления механизмом переключения ФМ.

1, 2 — ведущий и ведомый вал; $\Phi_{\rm M}$, $\Phi_{\rm B}$, $\Phi_{\rm 3}$ — фрикционные муфты главной, высшей и экономичной передач; $M_{\rm д}$, $\omega_{\rm д}$ — крутящий момент и угловая скорость вала двигателя; $I_{\rm д}$ — момент инерции движущихся частей двигателя и связанных с ними деталей; $M_{\rm BoM}$, $I_{\rm BoM}$ — моменты сопротивления и инерции тракторного агрегата; $\omega_{\rm II}$ — угловая скорость ведомого вала; $u_{\rm B}$, $u_{\rm 3}$ — передаточное число; M_f , ω_f — момент сопротивления и угловая скорость при перекатывании трактора

Puc. 1 – Двухмассовая модель BOMa двумя фрикционными связями

Для математического моделирования процесса переключения используем диаграмму разгона, представленную на рисунке 2, допущения и уравнения, предложенные в [2, 3].

 t_0 — время безразрывного переключения; $t_{\rm n}$ — время завершения периода перекрытия; $t_{\rm n}$ — время включения ФМ экономичной передачи; $t_{\rm 6}$ — время буксования ФМ экономичной передачи

Puc. 2 – Теоретическая диаграмма разгона BOM

Получены следующие выражения для расчета работы трения для каждого периода переключении ФМ:

- от 0 до t_0 (одновременная работа ΦM обеих передач):

$$L_0 = \frac{1}{2} M_{\text{BOM}} \omega_{\text{M}} \left(1 - \frac{1}{u_{\text{B}}} \right) \left(t_{\text{M}} \frac{k_{\text{3}}}{\beta} \right)$$

- от t_0 до $t_{\scriptscriptstyle \Pi}$ (завершения периода перекрытия):

$$L_{1} = \frac{1}{2} M_{\text{BOM}} \omega_{\text{A}} \left(1 - \frac{1}{u_{\text{B}}} \right) \left(\frac{\beta t_{\text{B}}^{2}}{t_{\text{M}} k_{\text{B}}} - t_{\text{M}} \frac{k_{\text{B}}}{\beta} \right)$$

— от $t_{\text{п}}$ до $t_{\text{м}}$ (включение ФМ экономичной передачи):

$$L_{2} = \frac{M_{\mathrm{дH}}\beta}{t_{\mathrm{M}}} \left[\frac{\omega_{\mathrm{дH}}}{2} \left(1 - \frac{u_{\mathrm{3}}}{u_{\mathrm{B}}} \right) \left(t_{\mathrm{M}}^{2} - t_{\mathrm{\Pi}}^{2} \right) - \frac{M_{\mathrm{дH}} \left(t_{\mathrm{M}} - t_{\mathrm{\Pi}} \right)}{24} \left(\frac{\beta - k}{I_{\mathrm{J}}} - \frac{\beta - k_{\mathrm{3}}}{I_{\mathrm{BOM}}} \right) \times \frac{t_{\mathrm{M}} - t_{\mathrm{\Pi}}}{t_{\mathrm{M}} - t_{\mathrm{0}}} \left(3t_{\mathrm{M}} - t_{\mathrm{\Pi}} \right) \right]$$

— от $t_{\scriptscriptstyle M}$ до $t_{\scriptscriptstyle 6}$ (буксование ΦM экономичной передачи):

$$L_{3} = \frac{M_{\text{дH}}\beta(t_{6} - t_{\text{M}})}{2t_{\text{M}}} \left[2\omega_{\text{дH}} \left(1 - \frac{u_{\text{9}}}{u_{\text{B}}} \right) - M_{\text{дH}} \left(t_{6} - t_{\text{II}} \right) \left(\frac{\beta - k}{I_{\text{д}}} - \frac{\beta - k_{\text{3}}}{I_{\text{BOM}}} \right) \right]$$

Значения переменных, входящих в формулы, описаны в таблице. Числовые значения взяты из техпаспорта трактора «Беларус» класса 5.0, работы [3] и проведенных нами стендовых испытаний ВОМ.

Обозначение	Наименование	Значение
$M_{\scriptscriptstyle m BOM}$	момент на ВОМ (сопротивление привода тракторного агрегата), Н/м	1000
$\omega_{\scriptscriptstyle m I}$	угловая скорость ведомого вала двигателя, рад/с	220
$u_{\scriptscriptstyle \mathrm{B}}$	передаточное число ВОМ на высшей передаче	1,45
$t_{_{ m M}}$	время включения ФМ экономичной передачи, с	1,5
k_3	коэффициент загрузки двигателя сопротивлением привода тракторного агрегата	0,8
β	коэффициент запаса включаемой ФМ	2
t_{Π}	время завершения периода перекрытия, с	0,84
$u_{\scriptscriptstyle 9}$	передаточное число ВОМ на экономичной передаче	2,1
k	коэффициент загрузки двигателя сопротивлением перекатыванию тракторного агрегата	1,1
$I_{\scriptscriptstyle m I}$	момент инерции двигателя, кг/м ²	1,67
$I_{\scriptscriptstyle \mathrm{BOM}}$	момент инерции ВОМ, кг/м ²	2,8
t_{6}	время буксования ФМ экономичной передачи, с	1,55

Таблица 1 – Значения переменных для расчета работы

График расчетных значений энергии, необходимой для переключения привода ВОМ, представлены на рисунке 3. Из полученных результатов следует, что наибольшие потери энергии возникают на отрезке времени t_0 до t_{π} (завершающий отрезок периода перекрытия). Это объясняется тем, что включаемая передача начинает подводить к ведомому валу большую мощность, чем требуется для обеспечения вращения ВОМ со скоростью, соответствующей выключаемой передаче, что должно было бы выровнять скорости выключаемой и экономичной передач. Однако, если момент выключаемой передачи ещё достаточно велик, то выключаемая передача препят-

ствует разгону ВОМа, отводя избыточную мощность, подводимую экономичной передачей, обратно с ведомого вала 2 на ведущий вал 1. Это приводит к циркуляции мощности в контуре узла, образованном валами 1 и 2 и вызывает дополнительные затраты мощности.

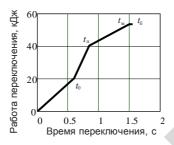


Рис. 3 – Расчетные значения работы переключения ВОМ

Выволы

Выполненные расчеты работы сил трения для различных периодов переключения ФМ ВОМ позволяют оценить необходимые затраты энергии на каждом временном отрезке переключения передач ВОМ и могут служить основой для разработки схем оптимального управления механизмом переключения ФМ.

Литература

- 1. Бобровник А.И., Аль-Кинани М.Ф. и др. Независимый задний вал отбора мощности трактора, Патент на полезную модель № 9088 от 18.09.2012.-3 с.
- 2. Бобровник А.И., Рынкевич С.А., Аль-Кинани М.Ф. Переключение передачи на экономичный режим независимого вала отбора мощности / Вестник Белорусско-российского университета 2013 №3 С. 6-12.
- 3. Шарипов, В.М. и др. Переключение передач в КП трактора без разрыва потока мощности / В.М. Шарипов, К.Н. Городецкий, М.И. Дмитриев, Ю.С. Щетинин, И.А. Маланин, А.С. Зенин // Тракторы и сельхозмашины. 2012. N 5. С. 19-23.

УДК 629.366.016.8

УМЕНЬШЕНИЕ ТОКСИЧНОСТИ ОТРАБОТАВШИХ ГАЗОВ ТРАКТОРА «БЕЛАРУС»

Н.Г. Шабуня, к.т.н., доцент, Т.А. Варфоломеева, ст. преподаватель, П.Н. Синкевич, к.т.н., доцент, Т.А. Мищенков, студент

УО «Белорусский государственный аграрный технический университет», г. Минск, Республика Беларусь