- 2. П.Котзаогланиан. Пособие для ремонтника. Справочное пособие по монтажу, эксплуатации, обслуживанию и ремонту современного оборудования холодильных установок и систем кондиционирования. Перевод с французского д.т.н., профессора В.Б.Сапожникова. АНОО «Учебный центр «Остров»» М. 2007, С. 250-263, 809-817.
- 3. В.В.Шишов. Контроль наличия масла в компрессорах. Журнал «Холодильная техника» №4, 2008.

УДК 636.638

ПЕРСПЕКТИВЫ ИСПОЛЬЗОВАНИЯ АВТОМАТИЗИРОВАННОГО СМЕСИТЕЛЯ ДЛЯ ВОСТАНОВЛЕНИЯ ЗАМЕНИТЕЛЯ ЦЕЛЬНОГО МОЛОКА

Колодько Э.В., аспирант, Сыманович В.С. к.т.н., доцент

УО « Белорусский государственный аграрный технический университет», г. Минск, Республика Беларусь

Введение

В современном животноводстве использование заменителя цельного молока (ЗЦМ) для кормления молодняка крупного рогатого скота обусловлено минимизацией расхода цельного молока, так как использование различных ЗЦМ так же, обеспечивает нормальный рост и развитие телят. Залогом получения хороших результатов при использовании ЗЦМ является строгое соблюдение технологии его приготовления. В Республике Беларусь широкое использование ЗЦМ сдерживается еще и тем, что технология приготовления не обеспечена в полном объеме наличием современных автоматизированных смесителей. Присутствие же незначительной части зарубежных установок не позволяет осуществить автоматизированную механизацию процессов кормления. Таким образом, необходима разработка современного автоматизированного смесителя для восстановления ЗЦМ.

Основная часть

Для восстановления ЗЦМ широко применяют процессы перемешивания, которое способствует интенсификации процессов тепло- и массообмена, сопутствующих перемешиванию. ЗЦМ - это сухой мелкодисперсный порошок с выраженным привкусом вводимых в него компонентов и вкусовых добавок, белого цвета с кремовым оттенком и темными вкраплениями. При использовании ЗЦМ следует учитывать несколько факторов, которые и определяют эффективность их применения. Первый фактор - количество сухого вещества в одном литре восстановленного ЗЦМ. Оптимальным считается содержание 125 г сухого вещества в одном литре вос-

становленного молока, что достигается при разведении порошка с водой в соотношении 1:8. Как правило, такое соотношение рекомендуется выдерживать при выпойке 3ЦМ с 7-8 дня по 20-21 день. Телятам старше этого возраста можно выпаивать 3ЦМ, разведенный в соотношении 1:9, что будет соответствовать содержанию примерно 105-110 г сухого вещества в 1 литре продукта. Температура должна быть близкой к температуре тела теленка, которая равна 38-39 0 C.

Рисунок 1 — Схема восстановления ЗЦМ

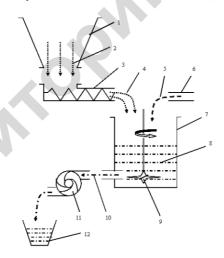


Рисунок 2 — Принципиальная схема процесса приготовления и раздачи жидкого 3ЦМ:

1 — бункер с сухим ЗЦМ, 2 — сухой ЗЦМ, 3 — дозатор сухого ЗЦМ, 4 — дозированная порция сухого ЗЦМ, 5 — вода, 6 — водяной патрубок, дозированная порция воды, 7 — бак, 8 — жидкий ЗЦМ, 9 — мешалка, 10 — жидкий ЗЦМ, 11 — насос-дозатор, 12 — кормушка животного

Восстанавливают ЗЦМ на большинстве ферм и комплексов осуществляется в два приема. Вручную сначала взвешивают необходимое количество порошка, затем смешивают его с водой температурой около 50 °С (примерно половиной требуемого количества). Смешивание проводят до полного растворения комочков ЗЦМ, затем добавляют остальную более прохладную воду, чтобы перед выпойкой температура восстановленного молока была в пределах 38-40 °С. Восстанавливают ЗЦМ непосредственно перед выпаиванием животных (рисунок 1). Однако ручное восстановление влияет на полноту растворения молочной смеси, также не выдерживаются в полной мере зоотехнические и ветеринарные требования, а также человеческий фактор оказывает существенное влияние.

Для устранения всех этих недочетов ручного восстановления ЗЦМ необходимо применение автоматизированного смесителя, в котором установлена мешалка лопастного типа определенной формой лопастей.

Применение автоматизированного смесителя для восстановления ЗЦМ (рисунок 2) позволит решить ряд вопросов связанных с кормлением телят. Сухой ЗЦМ из бункера 1 поступает в дозатор сухого ЗЦМ 3, где дозированными порциями одновременно с водой из водяного патрубка 6 подается в бак 7. Мешалка 9 приводимая в движение от электродвигателя перемешивает, ЗЦМ с водой образуя молочную смесь. Затем при помощи насоса-дозатора 11 жидкий ЗЦМ 10 порционно подается в кормушку животного 12 (рисунок. 2).

Заключение

Для создания сбалансированных по питательной ценности кормосмесей необходимо отметить важную роль процесса смешивания. При его реализации необходимо учитывать физико-механические и реологические свойства всех компонентов кормосмеси и конструктивно-технологические, режимные параметры смесителя, что в совокупности влияет на качество приготавливаемой смеси и на продуктивность животных. Использование автоматизированного смесителя для восстановления ЗЦМ существенно увеличивает производительность труда, исключает человеческий фактор и позволяет соблюдать зоотехнические и ветеринарные требования при восстановлении ЗЦМ.

При приготовлении сухих и влажных кормосмесей существенным является требование получения однородной массы с одинаковым содержанием компонентов в любом объеме кормосмеси. Применение имеющегося оборудования не всегда обеспечивает качественное смешивание компонентов, так как используется неэкономично и. малоэффективно с большими затратами энергии. Возникают трудности как конструктивного оформления, математического описания протекающих процессов, так и прогнозирования полученных результатов. В связи с этим возникает необходи-

мость создания наиболее эффективных и совершенных конструкций смесителей, способных выполнять качественно непроизводительно приготовление смесей.

Литература

- 1. Гриднев, А.Н. Совершенствование рабочего процесса и обоснование параметров раздатчика смесителя кормов для телят Текст./А.Н. Гриднев Автореф. канд. дисс., Мичуринск, 2004.
- 2. Васильцов, В.А. Аппараты для перемешивания жидких сред Текст./В.А. Васильцов, В.Г. Ушаков Л.: Машиностроение, 1979.
- 3. Заменители молока для с/х животных ЗЦМ (статья) Электронный ресурс./ Режим доступа: http://www.kalvomilk.ru/products/zameniteli/

УДК 631.363.7

МОДЕРНИЗАЦИЯ РАБОЧИХ ОРГАНОВ КАК СРЕДСТВО СНИЖЕНИЯ ЭНЕРГОЕМКОСТИ ПРОЦЕССА СМЕШИВАНИЯ КОРМОВ

Китун А.В., д.т.н., доцент, Дедок Н.Н., к.ф.-м.н., доцент, Швед И.М., ст. преподаватель, Гурко А.В., студент, Зинович К.В., студент

УО «Белорусский государственный аграрный технический университет», г. Минск, Республика Беларусь

Введение

Как известно, существует два типа кормления свиней - жидкое и сухое. Считается, что жидкое кормление более эффективно по причине лучшей усвояемости жидкого корма животными. И при приготовлении жидкого корма самым важным является вопрос однородности смеси. Кормление жидкими кормосмесями способствует уменьшению потерь корма [1-6].

Основная часть

Современные смесители применяемые при кормлении свиней бывают с горизонтальным и вертикальным типом рабочих органов. Для разного вида среды, в которой работает мешалка, подбираются более активные смешивающие рабочие органы: пропеллерного типа, лопастной, шнековый и турбулентный. Задачей при конструировании различного рода смесителей кормов является снижение энергоемкости приготовления смеси и повышение качества смешивания кормовых компонентов.

Известен смеситель кормов [7], содержащий привод, емкость, в которой, соосно, установлена лопастная мешалка, при вращении которой поток корма от центробежной силы направлен в радиальном направлении. Перемешивание в разных слоях корма происходит за счет направления