тором BELARUS-3522. Испытания проводились с участием специалистов МЗШ в течение 12 рабочих смен, общая наработка плуга с установленным образцом грядилем за время испытаний составила 192 га. В ходе испытаний отказов в работе, повреждений (деформаций, трещин) грядиля не было выявлено, значения показателей вспашки соответствовали нормам ТНПА.

Таким образом, выполненные работы показали перспективность изготовления грядиля с использованием аддитивной технологии листового ламинирования – SL-технологии. В результате тологии листового ламинирования — SL-технологии. В результате топологической оптимизации конструкции грядиля, состоящей из
листовых выкроек, его масса уменьшилась на 17% по сравнению с
исходной. Благодаря использованию SL-технологии количество
операций технологического процесса изготовления грядиля сократилось почти в 2 раза (с 11 до 6), производительность увеличилась
в 1,6 раза (трудоемкость уменьшилась с 6,25 час до 3,81 час), а себестоимость изготовления уменьшилась в 1,4 раза.

Грядиль, изготовленный с помощью SL-технологии, обладает
требуемой работоспособностью, по рабочим характеристикам соответствует аналогичным грядилям, установленным на плуге при
проведении испытаний и изготовленным по традиционной технологии, и может использоваться согласно своему функциональному
назначению в составе оборотного плуга.

назначению в составе оборотного плуга.

УДК 621.432/004.932

АНАЛИЗ КОЛОРИМЕТРИЧЕСКИХ ПЛАГИНОВ ПРОГРАММНОГО КОМПЛЕКСА ІМАСЕЛ ДЛЯ ОЦЕНКИ ЦВЕТА МОТОРНОГО МАСЛА

С.А. Ласоцкий, студент ФТС; **А.И.** Цымбалюк, студент ФТС Научные руководители: В.М. Капцевич., д-р техн. наук, профессор; В.К. Корнеева, канд. техн. наук, доцент УО «Белорусский государственный аграрный технический университет», г. Минск, Республика Беларусь

Цвет моторного масла является одним из важных показателей его качества и состояния в процессе эксплуатации. Потемнение масла связано с накоплением продуктов окисления, загрязнений и частиц износа, что позволяет использовать цвет как диагностический критерий. Для объективной оценки цвета применяются методы колориметрии, основанные на численных параметрах цветового пространства.

Программный комплекс *ImageJ* (разработанный *National Institutes of Health*, США) [1] широко используется для анализа изображений в науке и технике. В его функционал входят плагины для колориметрического анализа, позволяющие преобразовывать изображения и рассчитывать количественные характеристики цвета.

ImageJ позволяет работать с изображениями в различных цветовых моделях (*RGB*, *HSB*, *Lab*, *CMYK*) [2, 3]. В стандартном пакете *ImageJ* реализованы базовые функции:

- перевод изображения в отдельные каналы (красный, зелёный, синий);
 - измерение средней интенсивности по *ROI* (области интереса);
 - построение гистограмм распределения яркости и цвета.

Однако для задач оценки цвета моторного масла требуется более детализированный колориметрический анализ, который обеспечивается применением различных плагинов [4–6].

Наиболее применимыми для колориметрических исследований являются следующие плагины: Color Inspector 3D, Color Histogram, RGB Measure, Colour Deconvolution, Color Space Converter.

Плагин Color Inspector 3D позволяет визуализировать распределение пикселей изображения в трёхмерном цветовом пространстве, где каждая точка соответствует цвету пикселя в различных пространствах, например, RGB или HSB. Плагин позволяет просматривать распределения цвета в объёмном виде, выбирать интересующие области спектра изображения, сопоставлять сопоставление разных образцов (например, свежего и отработанного масла) по пространственному расположению цветовых координат.

К преимуществу плагина можно отнести наглядность визуализации изображения, а к недостатку – получение в большей степени качественной оценки, а не количественной.

Плагин Color Histogram предназначен для построения гистограмм распределения цветовых координат R, G, B, что удобно для анализа изменения цветового тона и насыщенности цвета масла в процессе эксплуатации. Плагин позволяет оценить равномерность

окраски, выявить преобладающие оттенки, определить смещения максимумов распределения при изменении цвета масла.

Плагин *RGB Measure* позволяет определить усредненные значения цветовых координат *R*, *G*, *B* для выделенной области. Плагин является одним из наиболее удобных для количественного анализа, т.к. дает цифровые данные для дальнейшей обработки.

Плагин Colour Deconvolution выполняет разделение сложного изображения на каналы, соответствующие заданным цветовым компонентам. Плагин позволяет выделять отдельные цветовые составляющие и сопоставлять данные с эталонными цветовыми шкалами. Полезен для случаев, когда требуется выделить конкретные оттенки (например, для сравнения с эталонными шкалами). Например, он может быть полезен для точного выделения оттенков масла при сравнении с эталонной шкалой ASTM D1500 [7].

Плагин Color Space Converter позволяет переводить изображе-

Плагин Color Space Converter позволяет переводить изображения в координатах RGB в цветовые пространства Lab, HSL, и HSB и выполнять математические преобразования их цветовых координат. Цветовое пространство Lab (L – яркость, a и b – оттенки зеленого-красного и синего-желтого), и пространства HSB/HSL (H – оттенок, S – насыщенность, B/L – яркость/светлота), наиболее соответствуют восприятию цвета человеком. Поэтому использование данного плагина целесообразно при визуальном сравнении, например, цвета анализируемого масла с эталонной шкалой ASTM D1500.

Анализ рассмотренных плагинов позволяет заключить, что при сравнении свежего, работающего и отработанного моторного масла можно применять плагин *RGB Measure* для получения усредненных цветовых координат. Для построения зависимости изменения оттенка масла от наработки двигателя полезен плагин *Color Histogram*. Для сопоставления с эталонной шкалой *ASTM D*1500 оптимально использовать плагины, работающие с пространствами *Lab*, *HSL* и *HSB*, так как они лучше отражает восприятие цвета человеком.

На основании вышеизложенного следует отметить, что колориметрические плагины *ImageJ* представляют собой удобный инструмент для количественной и качественной оценки цвета моторных масел. Их применение позволяет:

- объективно фиксировать изменение цвета при эксплуатации;
- сопоставлять результаты с эталонными шкалами;
- использовать цвет как диагностический признак технического состояния двигателя.

Таким образом, использование *ImageJ* и специализированных плагинов является перспективным направлением для внедрения методов компьютерного анализа изображений в техническую диагностику.

Литература

- 1. Ferreira, T. ImageJ user guide /Fiji 1.46 / T. Ferreira, W. Rasband. 2012. 198 p.
- 2. Tebbe, F. Colour Spaces / F. Tebbe, C. Fath. JOVIS Verlag, 2008. 44 p.
- 3. Malacara, D. Color vision and colorimetry: theory and applications / D. Malacara. 2nd ed. Bellingham, Washington: SPIE, 2011. 188 p.
- 4. Schroeder, A.B. The ImageJ ecosystem: open-source software for image visualization, processing, and analysis / A.B. Schroeder et al. // Protein Science. 2021. № 30. P. 234-249.
- 5. Barthel, K.U. 3D-Data Representation with ImageJ / K.U. Barthel // ImageJ Conference, 2006. Luxembourg: Luxembourg Institute of Science and Technology, 2006. 215458973.
- 6. Muljosumarto, C. A Case Study Color as a Visual Language: Focused on TV Commercial / C. Muljosumarto // NIRMANA. 2017. Vol. 17. № 1, Januari. P. 1–9.
- 7. Standard Test Method for Color of Petroleum Products (ASTM Color Scale): ASTM D1500-12 (2017). ASTM International, West Conshohocken, PA, 2017. 5 p.

УДК 621.432/004.932

АНАЛИЗ ПЛАГИНОВ ПРОГРАММНОГО КОМПЛЕКСА *IMAGEJ* ДЛЯ КОНТРОЛЯ ПРОДУКТОВ ИЗНОСА В МОТОРНОМ МАСЛЕ

А.В. Макаревич, студент ФТС; А.И. Цымбалюк, студент ФТС Научные руководители: В.М. Капцевич., д-р техн. наук, профессор; В.К. Корнеева, канд. техн. наук, доцент УО «Белорусский государственный аграрный технический университет», г. Минск, Республика Беларусь

Контроль технического состояния двигателей внутреннего сгорания является важной задачей эксплуатации техники. Одним из эффективных методов диагностики является анализ моторного масла, в котором накапливаются продукты износа деталей трения. Морфологические характеристики частиц износа (размер, форма, цвет, распределение) отражают механизмы изнашивания и позволяют оценить степень деградации масла и состояние двигателя [1].