Чиркова Н.С., ассистент

Яшин А.В., кандидат технических наук, доцент ФГБОУ ВО «Пензенский государственный аграрный университет», г. Пенза, Российская Федерация

НЕКОТОРЫЕ РЕЗУЛЬТАТЫ ТЕОРЕТИЧЕСКИХ ИССЛЕДОВАНИЙ ДВИЖЕНИЯ ВЫДЕЛЯЕМОГО ЖИРОВОГО ШАРИКА В МЕЖТАРЕЛОЧНОМ ПРОСТРАНСТВЕ СЕПАРАТОРА-СЛИВКООТЛЕЛИТЕЛЯ

Аннотапия. В статье рассмотрено движение жирового межтарелочном пространстве барабана сепаратора-сливкоотделителя при условии замкнутости барабана или отсутствия движения молока в барабане. Использован метод Жозефа Луи Лагранжа для определения траектории движения жирового шарика, когда известны действующие силы на жировой шарик в молоке. Получены решения уравнения Лагранжа второго рода и определены уравнения траекторий для 1 этапа разделения, когда жировой шарик движется до момента осаждения на внешней поверхности конической части разделительной тарелки, а также для 2 этапа, когда происходит движение жирового шарика по внешней поверхности конической части разделительной тарелки к оси барабана. Получены определения времени пребывания жирового межтарелочном пространстве барабана сепаратора-сливкоотделителя на каждом этапе разделения.

Abstract. The article considers the movement of a fat ball in the interstitial space of a cream separator drum, provided that the drum is closed or there is no movement of milk in the drum. The method of Joseph Louis Lagrange was used to determine the trajectory of a fat ball when the forces acting on the fat ball in milk are known. Solutions of the Lagrange equation of the second kind are obtained and trajectory equations are determined for the 1st stage of separation, when the fat ball moves until it settles on the outer surface of the conical part of the separation plate, as well as for the 2nd stage, when the fat ball moves along the outer surface of the conical part of the separation plate to the axis of the drum. Equations are obtained for determining the residence time of a fat ball in the interstitial space of a cream separator drum at each stage of separation.

Ключевые слова: жировой шарик, межтарелочное пространство, движение, траектория, время.

Keywords. fat ball, interstitial space, movement, trajectory, time.

Рассматривая межтарелочное пространство (рисунок 1) барабана сепаратора-сливкоотделителя, можно отметить, что оно ограничено двумя соседними тарелками так, что четные тарелки выполнены гладкими, а нечетные имеют шипики. Данные тарелки наклонены относительно горизонтальной плоскости под углом α и вращаются вокруг вертикальной оси с постоянной угловой скоростью ω . Примем ось O_r касательной к

наружной поверхности конической части тарелки лежащей на оси вращения. В виду того, что описание движения жировых шариков с потоком молока является сложной задачей то целесообразно воспользоваться универсальным инструментом для анализа любой механической системы независимо от сложности её состава, типа движения и количества составляющих тел уравнением Лагранжа второго рода. При этом в качестве обобщённых координат механической системы необходимо использовать минимальный набор независимых переменных, полностью ее описывающих, т.е. зная значения этих координат, мы можем однозначно определить положение каждой материальной точки системы, учитывая взаимосвязь их движений. Тогда за обобщенную координату примем радиус-вектор г, как расстояние от вертикальной оси симметрии по оси Qr до жирового шарика на внешней поверхности тарелки [3, 4, 6].

Уравнение Лагранжа второго рода запишется в следующем виде:

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{r}}\right) - \frac{\partial L}{\partial r} = \pm \frac{\partial \Phi}{\partial \dot{r}},$$
 (1)

 $\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{r}} \right) - \frac{\partial L}{\partial r} = \pm \frac{\partial \Phi}{\partial \dot{r}}, \tag{1}$ где $\frac{d}{dt}$ — производная по времени или скорость изменения значения функции;

t − время, с;

 $\frac{\partial L}{\partial r}$ — частная производная функции Лагранжа по переменной обобщенной скорости жирового шарика, Н • с:

 $\frac{\partial L}{\partial r}$ — частная производная функции Лагранжа по переменной обобщенной координате жирового шарика, Н;

 $\frac{\partial \Phi}{\partial r}$ — частная производная функции Релея по переменной обобщенной скорости жирового шарика, Н;

▲ – функция Лагранжа, Дж;

г – обобщенная координата жирового шарика, м;

ф −обобщенная скорость жирового шарика, м/с;

Ф – диссипативная функция Релея, Вт;

В уравнении Лагранжа второго рода в правой части у частной производной функции Релея по переменной обобщенной скорости жирового шарика указан знак «±», где «+» соответствует движению жирового шарика на 1 этапе разделения (когда жировой шарик движется до момента осаждения на внешней поверхности конической части разделительной тарелки), а «-» соответствует 2 этапу (когда происходит движение жирового шарика по внешней поверхности конической части разделительной тарелки к оси барабана), в виду того, что диссипативная функция Релея служит математическим представлением процесса рассеивания энергии, так как сила вязкого трения в механической системе приводит к тому, что энергия упорядоченного движения рассеивается, превращаясь в энергию хаотичного теплового (броуновского) движения [1, 2, 5].

Тогда уравнение Лагранжа второго рода (1) после ряда математических преобразований представляется в виде системы уравнений с учетом этапов разделения молока:

Для 1 этапа разделения

$$r_1 = \frac{r_0}{2} \cdot \left(\mathbf{1} + e^{\frac{2 \cdot r_{\text{BMM}}^2 \cdot p_{\text{MMM}} \cdot (p_{\text{MI}} - p_{\text{MMM}}) \cdot \omega^2 \cdot \mathbf{t} \cdot eos^2 \alpha}{9 \cdot \mu_{\text{M}} \cdot p_{\text{MI}}}} \right), \tag{2}$$

Для 2 этапа разделения

$$r_2 = \frac{r_0}{2} \left(1 + \frac{1}{\frac{2 \cdot r_{\text{min}}^2 \cdot \rho_{\text{min}} \cdot (\rho_{\text{min}} \cdot \rho_{\text{min}}) \cdot \omega^2 \cdot r \cdot \epsilon o s^2 \alpha}{9 \cdot \mu_{\text{min}} \cdot \rho_{\text{min}}}} \right). \tag{3}$$

где r_0 – начальный радиус положения жирового шарика, м;

 $r_{\rm *m}^2$ – радиус жирового шарика, м;

 $\rho_{\text{ж.ш.}}$ – плотность жирового шарика, кг/м³;

 $\rho_{\rm M}$ – плотность молока, кг/м³;

 ω – угловая скорость барабана, c^{-1} ;

t– время, с;

 α — угол наклона тарелки к горизонтали, град;

µ_м – динамическая вязкость молока, Па·с.

Анализируя уравнения (2) и (3) следует заметить, что при замкнутой системе барабана, когда отсутствует подвод молока и отвод сливок и обезжиренного молока, жировые шарики в межтарелочном пространстве сепаратора-сливкоотделителя двигаются по экспоненте, вид которой зависит от первоначального положения жировых шариков r_0 , их физикомеханических свойств жировых шариков (радиуса $r_{\text{ж.ш.}}^2$ и плотности $\rho_{\text{ж.ш.}}$), физико-механических свойств молока (плотность $\rho_{\text{м}}$ и динамической вязкости $\mu_{\text{м}}$), конструктивного параметра — угла наклона разделительной тарелки к горизонтали α и кинематического параметра — угловой скорости барабана ω .

Из уравнений (2) и (3) определим время пребывания жирового шарика в межтарелочном пространстве барабана сепаратора-сливкоотделителя при условии замкнутости барабана (отсутствия движения молока в барабане), используя свойство степеней, получим:

Для 1 этапа разделения

$$t_1 = \frac{4.5 \cdot \mu_{\text{M}} \cdot \rho_{\text{M}} \cdot \ln\left(\frac{2 \cdot r_1 - r_0}{r_0}\right)}{r_0^2 \dots \cdot \rho_{\text{M}, \text{III}} \cdot (\rho_{\text{M}} - \rho_{\text{M}, \text{III}}) \cdot \omega^2 \cdot \cos^2\alpha}.$$
 (4)

Для 2 этапа разделения

$$t_{2} = -\frac{4.5 \cdot \mu_{\text{M}} \cdot \rho_{\text{M}} \cdot \ln\left(\frac{2 \cdot r_{2} - r_{0}}{r_{0}}\right)}{r_{\text{M}}^{2} \cdot \rho_{\text{M}, \text{III}} \cdot (\rho_{\text{M}} - \rho_{\text{M}, \text{III}}) \cdot \omega^{2} \cdot \cos^{2}\alpha}.$$
 (5)

Знак «-» в уравнении (5) указывает на возвратное движение жирового шарика, после осаждения на внешней поверхности конической части разделительной тарелки.

Список использованной литературы

- 1. Обоснование критического радиуса жирового шарика и его граничного положения на конической части разделительной тарелки сепараторасливкоотделителя/А.В. Яшин, Ю.В. Полывяный, П.Н. Хорев, Н.С. Чиркова//Нива Поволжья. 2024. № 4(72). DOI 10.36461/NP.2024.72.4.014. EDN HSJPFS.
- 2. Результаты теоретических исследований движения выделяемой частицы примеси в межтарелочном пространстве сепаратора-молокоочистителя/А.В. Яшин, А.А. Гусев, Н.С. Чиркова, Р.Р. Девликамов//Нива Поволжья. 2024. № 4(72). DOI 10.36461/NP.2024.72.4.015. EDN HPFQRL.
- 3. Торосян Д.С. Основы теории и методы расчетов процесса сепарирования в мясной и молочной промышленности. М.: Агропромиздат, 1986, 128 с.
- 4. Чеботарев, Е. А. Сепарирование молока и молочного сырья. История, теория, практика/Е.А. Чеботарев. Ставрополь: Северо-Кавказский федеральный университет, 2012. 299 с. ISBN 978-5-88648-838-8. EDN SNBVOH.
- 5. Чеботарев, Е. А. Экспериментальное исследование распределения жировых шариков в межтарелочных пространствах в процессе сепарирования/Е. А. Чеботарев//Современная наука и инновации. 2019. № 2(26). С. 176–182. DOI 10.33236/2307-910X-2019-2-26-176-182. EDN PYXLBK.
- 6. Яшин, А. В. Теоретические исследования движения выделяемой частицы примеси в межтарелочном пространстве сепаратора-молокоочистителя/А.В. Яшин, А.А. Гусев, Н.С. Чиркова//Нива Поволжья. 2024. № 2(70). DOI 10.36461/NP.2024.70.2.004. EDN RHXQYE.

Summary. The method of Joseph Louis Lagrange was used to determine the trajectory of a fat ball when the forces acting on the fat ball in milk are known. The trajectory equations are obtained for the 1st stage of separation, when the fat ball moves until it settles on the outer surface of the conical part of the separation plate, as well as for the 2nd stage, when the fat ball moves along the outer surface of the conical part of the separation plate to the axis of the drum. It has been established that with a closed drum system, when there is no milk supply and no discharge of cream and skimmed milk, fat balls in the interstitial space of the cream separator move exponentially, the type of which depends on the initial position of the fat balls, their physico-mechanical properties of fat balls (radius and density), physico-mechanical properties of milk (density and dynamic viscosity), the design parameter is the angle of inclination of the separation plate to the horizontal, and the kinematic parameter is the angular velocity of the drum.