научно-практической конференции, Пенза, 29–30 апреля 2015 года. – Пенза : Пензенская государственная сельскохозяйственная академия, 2015. – С. 6–9. – EDN UCXPGN.

- 8. Исследования высевающей системы посевной машины / В. В. Шумаев [и др.] // Инновационная техника и технология. 2017. № 1 (10). С. 34–38. EDN YIOSUF.
- 9. Шумаев, В. В. Теоретические исследования технологического процесса посева зерновых культур комбинированным сошником / В. В. Шумаев, С. В. Тимохин, Э. Ж. Апиева // Нива Поволжья. 2023. № 4 (68). DOI 10.36461/NP.2023.68.4.017. EDN TMFKXS.
- Полевые исследования сеялки с высевающим аппаратом с катушкой секционного типа / А. Ю. Щученков [и др.] // Наука в центральной России. 2017.
 № 4 (28). С. 115–121. EDN ZDQTXX.
- 11. Совершенствование конструкции высевающего устройства / Н. Н. Романюк [и др.] // Актуальные проблемы инновационного развития и кадрового обеспечения АПК : материалы VII Международной научно-практической конференции, Минск, 4-5 июня 2020 г. Минск : БГАТУ, 2020. С. 186–189.

Summary. The article provides theoretical calculations for calculating the parameters of the groove of the coil of a grain planter, as well as numerical values of these parameters.

УДК 631.3

Шумаев В.В., кандидат технических наук, доцент ФГБОУ ВО «Пензенский государственный аграрный университет», г. Пенза, Российская Федерация

ИССЛЕДОВАНИЯ СЕЯЛКИ ДЛЯ ПОСЕВА СЕМЯН ОГОРОДНЫХ МЕЛКОСЕМЯННЫХ КУЛЬТУР

Аннотация. В статье приводится исследования сеялки для посева семян огородных мелкосемянных культур, а также приводятся основные выводы.

Annotation. The article provides research on a seed drill for sowing seeds of small-seeded garden crops, as well as provides the main conclusions.

Ключевые слова. Сеялка, семена, огород, посев. **Keywords.** Seeder, seeds, vegetable garden, sowing.

В статье приводится анализ конструкций существующих ручных сеялок для посева семян мелкосемянных культур, делается вывод по их недостаткам, приводится описание новой конструкции ручной сеялки для посева семян мелкосемянных культур на приусадебных участках, направленной на устранение отмеченных недостатков существующих ручных сеялок, также дано описание процесса работы сеялки для посева семян мелкосемянных культур, при выполнении технологической операции посева, а также приводятся некоторые результаты лабораторных

исследований по определению частоты подачи семян. Предлагаемая ручная сеялка для посева семян огородных культур (патент на полезную модель № 225519, опубл. 23.04.2024) [1, 2], разработанная в ФГБОУ ВО Пензенский ГАУ на кафедре «Механизация технологических процессов в АПК», обеспечивает возможность поштучного высева семян различного размера, обеспечивая строгое дозирование высеваемых семян четырёх фракций обеспечивающей высев семян размером до 2, 3, 4, 5 мм, при этом снижается вероятность заклинивания семян в углублении для семян, при чём установлено, что частота подачи семян не должна быть интенсивнее чем 1 шт/с, что приводит к повышению качества высева и производительности труда работника [3, 4].

Предлагаемая ручная сеялка (рисунок) для посева семян огородных культур содержит корпус-приемник семян I с плоской крышкой 2 и пробкой I0, нижним отверстием подачи семян 3 и рабочей зоной 4 и подвижный стержень подачи семян 5 с кнопкой 6 и пружиной 7, установленный в корпусе-приемнике I и в его отверстии подачи семян 3, причем пружина установлена между плоской крышкой 2 и кнопкой 6 с возможностью обеспечения возвращения подвижного стерженя подачи семян 5 в верхнее положение, при этом корпус-приемника I с внутренней стороны имеет Побразную боковую стенку 8, при этом профиль подвижного стерженя подачи семян 5 в поперечной плоскости представляет собой квадрат, при чём в нижней части стержня с каждой сторон выполнены углубления 9 торообразной формы глубиной 2, 3, 4, 5 мм [1, 5, 6].

Предлагаемая ручная сеялка для посева семян огородных культур работает в следующей последовательности.

В зависимости от типа семян подвижный стержень подачи семян 5 устанавливается необходимым углублением 9 в сторону к рабочей зоне 4. Он вставляется через нижнее отверстие 3 в корпусе-приемнике 1, верхняя часть подвижного стержня подачи семян 5 специального сечения своим направляющим цилиндром устанавливается в отверстии плоской крышки 2. Подвижный стержень подачи семян 5 вводится до упора в плоскую крышку 2 корпуса-приемника 1 сеялки. На выступающий направляющий цилиндр подвижного стержня подачи семян 5 надевается пружина 7, кнопка 6 надевается с натягом на подвижный стержень подачи семян 5, а при разборке – просто снимается [1, 7, 8].

Поворотом пробки 10 вправо или влево открывается загрузочное отверстие для засыпки семян в плоской крышке 2 корпуса-приемника 1, через которое засыпаются необходимые семена. Поворотная пробка 10 устанавливается на место. Сеялка готова к работе.

Корпус-приемник l сеялки берется в руку кнопкой 6 вверх. В этот момент семена заполняют полость корпуса l и по наклонному дну семена попадает в рабочую зону и в углубление g торообразной формы.

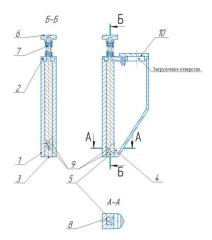


Рисунок – Схема ручной сеялки

Посев осуществляется путем нажатия на кнопку 6 до упора. При этом стержень 5 перемещается в нижнее положение, при котором углубление 9 в стержне 5 вместе с семенем выходит из нижнего отверстия 3 подачи семян корпуса-приемника 1. Семя выпадает из углубления 9 в землю. Кнопка 6 отпускается, и стержень 5 под действием пружины 7 возвращается в верхнее исходное положение. Процесс повторяется. С целью определения качественных показателей работы ручной сеялки для посева семян мелкосемянных культур проведены исследования, по определению равномерности подачи семян характеризуемой коэффициентом вариации у (%), в зависимости от частоты подачи семени стержнем, имеющим углубления конической формы обеспечивающей высев семян размером до 2, 3, 4, 5 мм, при этом использовались семена округлой формы четырёх фракций (таблица 1) [1, 9, 10]:

Таблица 1 – Семена в исследованиях

№	Глубина углубления	Размер фракции семян	Высеваемая
Π/Π	конической формы, мм	округлой формы, мм	культура
1	до 2	1,01,8	Табак
2	23	2,12,8	Капуста
3	34	2,93,9	Редис
4	45	3,64,5	Гранулированные семена моркови

На основании проведённых (таблица 2) исследований были построены графические зависимости равномерности подачи семян, в зависимости от частоты подачи семени стержнем при высеве различных культур.

Таблица 2 – Результаты исследований

Частота	Табак	Капуста	Редис	Гранулированные семена моркови	
подачи семян, шт/с	Коэффициент вариации, характеризующий равномерность подачи семян, v %				
0,25	55	60	59	57	
0,4	45	45	48	45	
0,55	41	37	33	40	
0,7	30	29	26	35	
0,85	25	19	19	23	
1	17	15	17	16	
1,15	16	14	16	14	
1,3	12	14	15	12	

Анализируя данные таблицы 2, можно сделать вывод, что с уменьшением частоты подачи семян, равномерность подачи семян увеличивается, поскольку снижается коэффициент вариации, при этом после снижения частоты подачи от 1 шт/с, влияние частоты подачи на коэффициент вариации снижается, следовательно частота подачи семян не должна быть чаще 1 шт/с.

Список использованной литературы

- 1. Патент на полезную модель № 225519 U1 Российская Федерация, МПК А01С 7/02. Ручная сеялка для посева семян огородных культур: № 2024106539: заявл. 13.03.2024: опубл. 23.04.2024 / В. В. Шумаев; заявитель Федеральное государственное бюджетное образовательное учреждение высшего образования «Пензенский государственный аграрный университет». EDN IYBAZA.
- 2. Шумаев, В. В. Теоретические исследования технологического процесса посева зерновых культур комбинированным сошником / В. В. Шумаев, С. В. Тимохин, Э. Ж. Апиева // Нива Поволжья. 2023. № 4 (68). DOI 10.36461/NP.2023.68.4.017. EDN TMFKXS.
- 3. Шумаев, В. В. Методика экспериментальных исследований и моделирование в агроинженерии: Учебное пособие для обучающихся по направлению подготовки 35.04.06 Агроинженерия / В. В. Шумаев. Пенза: Пензенский государственный аграрный университет, 2023. 116 с. EDN MULACX.
- 4. Патент № 2399186 С2 Российская Федерация, МПК А01С 7/20. Сошник для разбросного посева: № 2008134094/12: заявл. 19.08.2008: опубл. 20.09.2010 / Н. П. Ларюшин, С. А. Сущев, В. В. Лапин [и др.]; заявитель ФГОУ ВПО «Пензенская государственная сельскохозяйственная академия». EDN ZKPFGP.
- 5. Патент № 2399187 С1 Российская Федерация, МПК А01С 7/20. Сошник для разбросного высева семян и удобрений : № 2009107438/12 : заявл. 02.03.2009 : опубл. 20.09.2010 / Н. П. Ларюшин, С. А. Сущев, В. В. Лапин [и др.] ; заявитель ФГОУ ВПО «Пензенская государственная сельскохозяйственная академия». EDN MYGCTC.

- 6. Construction and theoretical justification of the drilling resistance of the cutter for production of ecological products of small seed crops / V. Ovtov, V. Shumaev, A. Kalabushev, I. Semov // Scientific Papers. Series A. Agronomy. 2022. Vol. 65. No. 1. P. 117–122. EDN NKUBVO.
- 7. Щученков, А. Ю. Полевые исследования сеялки с высевающим аппаратом с катушкой секционного типа / А. Ю. Щученков [и др.] // Наука в центральной России. 2017. № 4 (28). С. 115–121. EDN ZDQTXX.
- 8. Губанова, А. Р. Анализ характеристик сеялок / А. Р. Губанова, В. В. Шумаев // Инновационные идеи молодых исследователей для агропромышленного комплекса России: Сборник материалов Международной научно-практической конференции молодых ученых, Пенза, 28–29 марта 2019 года. Том III. Пенза: Пензенский государственный аграрный университет, 2019. С. 66–69. EDN DSVIPF.
- 9. Овтов, В. А. Теоретические исследования геометрических и кинематических параметров вальцового транспортирующего устройства / В. А. Овтов [и др.] // Нива Поволжья. -2020. -№ 1 (54). C. 113–117. DOI 10.36461/NP.2020.54.1.018. EDN PXYUOH.
- 10. Шумаев, В. В. Повышение качества посева зерновых культур сеялкой культиватором с разработкой комбинированного сошника : специальность 05.20.01 «Технологии и средства механизации сельского хозяйства» : автореферат диссертации на соискание ученой степени кандидата технических наук / Шумаев Василий Викторович. Пенза, 2009. 19 с. EDN NLEUDD.

Summary. The article provides research on a seed drill for sowing seeds of small-seeded garden crops, as well as provides the main conclusions.

УДК 638

Шумаев В.В., кандидат технических наук, доцент ФГБОУ ВО «Пензенский государственный аграрный университет», г. Пенза, Российская Федерация

УСТРОЙСТВО ДЛЯ ПОЕНИЯ ПЧЁЛ

Аннотация. В статье приводится анализ конструкций существующих устройств для поения пчёл делается вывод по их недостаткам, приводится описание новой конструкции для поения пчёл.

Annotation. The article provides an analysis of the designs of existing devices for watering bees, concludes on their shortcomings, and describes a new design for watering bees.

Ключевые слова. Пчела, жидкость, улей, поилка.

Keyword. Bee, liquid, beehive, drinker.

Известна «Поилка для пчел» (ПМ 215186), включающая цилиндрическую расходную емкость, снабженную сверху крышкой, нижний торец которой установлен в опорном стакане, размещенном в корпусе, причем нижний торец цилиндрической расходной емкости