посвященной памяти д.т.н., профессора Вендина Сергея Владимировича, Майский, 15 ноября 2024 года. – Майский: ФГБОУ ВО Белгородский ГАУ, 2024. – С. 8–9. – EDN BCTOSH.

- 3. Толочко Н.К., Романюк Н.Н., Авраменко П.В. Аддитивные технологии и высшая школа // Вышэйшая школа. 2021. № 1. С. 38–43.
- 4. Сосфенов Д. А. Цифровой двойник как инструмент оптимизации производственных процессов // Инновации и инвестиции. 2023. №5. URL: https://cyberleninka.ru/article/n/tsifrovoy-dvoynik-kak-instrument-optimizatsii-proizvodstvennvh-protsessov (дата обращения: 09.06.2025).
- 5. Инновационная деятельность в агропромышленном комплексе / В. А. Грабауров, Л. Ф. Догиль, З. М. Ильина [и др.]. Минск : Белорусский государственный аграрный технический университет, 2011. 305 с. ISBN 978-985-519-478-2. EDN PROEMV.
- 6. Модернизация технического средства для сортировки клубнеплодов / Н. Н. Романюк, В. Н. Еднач, В. А. Агейчик, С. М. Лакутя // Современные проблемы освоения новой техники, технологий, организации технического сервиса в АПК, Минск, 06–07 июня 2019 года. Минск: Белорусский государственный аграрный технический университет, 2019. С. 245–249.
- 7. Прогрессивные технологии технического сервиса в сельском хозяйстве [Электронный ресурс] : учебное пособие / Н. К. Толочко [и др.] ; Министерство сельского хозяйства Республики Казахстан, Казахский агротехнический университет им. С. Сейфуллина. Электронные данные (6 567 939 байт). Нур-Султан : КазАТУ, 2020. 176 с.

УДК 621.791.92: 621.81

Миранович А.В., кандидат технических наук, доцент; **Афанасенко** Д.Е., аспирант

Учреждение образования «Белорусский государственный аграрный технический университет», г. Минск, Республика Беларусь

ТРИБОЛОГИЧЕСКИЕ СВОЙСТВА ПОВЕРХНОСТЕЙ, ПОЛУЧЕННЫХ МАГНИТНО-ЭЛЕКТРИЧЕСКИМ УПРОЧНЕНИЕМ С ПНЕВМОВИБРОДИНАМИЧЕСКОЙ ОБРАБОТКОЙ

Аннотация Изучено влияние комбинированной обработки магнитноэлектрического упрочнения с пневмовибродинамической обработкой на трибологические свойства металлических поверхностей пустотелых деталей трансмиссии автотракторной техники в условиях трения качения.

Abstract The influence of combined magnetic-electric hardening with pneumovibrodynamic treatment on the tribological properties of metal surfaces of hollow transmission parts of automotive and tractor equipment under rolling friction conditions was studied.

Ключевые слова комбинированный способ обработки, магнитноэлектрическое упрочнение, пневмовибродинамическая обработка, композиционный ферромагнитный порошок, износостойкость, статистическая модель.

Keywords combined processing method, magneto-electric hardening, pneumovibrodynamic processing, composite ferromagnetic powder, wear resistance, and statistical model.

При магнитно-электрическом упрочнении (МЭУ) композиционными ферромагнитными порошками (КМП) пустотелых деталей, находящихся в постоянном контакте с роликоподшипниками (например, валы коробок перемены передач автотракторной техники), возможно образование на поверхностях таких дефектов, как разнотолщинность и сплошность наносимых покрытий, присутствие в них микротрещин, окисных включений [1-3]. Наличие этих дефектов приводит к увеличению шероховатости упрочненной поверхности, что значительно снижает износостойкость поверхностных слоев И ограничивает применения способа МЭУ. Для устранения этих недостатков проведены исследования возможности обработки металлических поверхностей комбинированным способом последовательным проведением совмещенных в одной технологической схеме МЭУ с поверхностной обработкой пневмовибродинамической (ПВДО). Для реализации комбинированной обработки пустотелых деталей типа «тело вращения» создан производственный технологический модуль мод. ЭМПМ-1 на базе токарного станка мод. 1Е61М, в состав которого входят установка для МЭУ мод. УМЭУ-1 с источником технологического тока мод. Invertec-270Т и инструмент для ПВДО [4]. Технологическая схема МЭУ с ПВДО позволяет выполнять исполнительными рабочими органами одновременное смятие и сглаживание микронеровностей формируемых поверхностных слоев.

В связи с этим цель исследований – изучить влияние комбинированной обработки МЭУ с ПВДО на трибологические свойства покрытий в условиях трения качения.

Исследования проводились на цилиндрических образцах (наружный диаметр – 40 мм, высота – 12 мм) из стали 45 с покрытиями из КМП Fe-10% V и ФБХ-6-2, полученными МЭУ с ПВДО. Обработка поверхностей выполнялась на модуле мод. ЭМПМ-1. Технологические режимы обработки были выбраны согласно рекомендациям [1, 2]. Механическая обработка образцов с покрытиями осуществлялась шлифованием на ИЗ мод. 3Б64 кругами различных видов электрокорунда зернистостью 16-40 на керамической связке. Магнитно-абразивная обработка покрытий выполнялась на установке с комбинированной электромагнитной системой на базе станка ЭУ-6 ферроабразивным порошком Ж15КТ. Триботехнические испытания упрочненных образцов проводились в условиях изнашивания со смазочным материалом и смазочным материалом с частицами абразива при трении качения с 10 %-м проскальзыванием на машине трения модели 2070 CMT-1 по схеме «дискдиск» (контртело из стали ШХ15 ГОСТ 801-78, закаленное до твердости 60 — 62 HRC, смазочный материал — трансмиссионное масло ТМ-3-18 (ТАП-15В) ГОСТ 23652-79). Величины износа образцов с покрытиями и эталона определялись оптическим длиномером ИЗВ-1 с точностью отсчета 0,001 мм. Исследование изношенных поверхностей выполнялось на растровом электронном микроскопе марки LEO 1455 VP фирмы «Карл Цейсс» (Германия).

Исследования износостойкости образцов с покрытиями и эталонных выполнялись с применением метода математического планирования эксперимента – центрального композиционного ортогонального плана (ЦКОП) второго порядка. В качестве исследуемого принималась интенсивность изнашивания образцов І. Варьируемыми факторами при изнашивании покрытий со смазочным материалом являлись нагрузка на верхний образец P, температура масла в ванне t_м и относительная скорость качения V_{κ} . При изнашивании покрытий со материалом, загрязненным частицами абразива использовался фактор – концентрация абразивных частиц в масле К_ч. Согласно методике исследования износостойкости режим испытаний соответствовал условиям работы деталей трансмиссий автотракторной техники: относительная скорость качения V_{κ} (0,5-3,0 м/с); нагрузка на образец Р (0,5-2,5 кH); температура масла в ванне $t_{\rm M}$ $(25-90^{\circ}\text{C})$; концентрация абразивных частиц в масле К_ч (0,05-0,25 г/см³). При трении качения проскальзывание (η) оценивалось отношением частоты вращения (n_2) ведомого диска диаметром (d_2) к частоте вращения (n_1) ведущего диска диаметром (d₁) при условии d₁ \approx d₂ ($\eta = n_2/n_1$).

Время испытания износостойкости покрытий в различных условиях изнашивания при трении качения принималось таким, чтобы путь трения для образцов, исследуемых на разных режимах, был одинаковым. Он составлял 20×10^3 м при трении со смазочным материалом и 6×10^3 м при трении со смазочным материалом, загрязненным частицами абразива. Это связано с меньшей интенсивностью изнашивания при наличии смазки и необходимостью увеличения износа для уменьшения погрешности измерений. Испытывались партии по пять образцов.

С учетом результатов исследований [5, 6] установили условия проведения экспериментов (таблица), которые рандомизировались во времени при помощи таблицы случайных чисел.

Таблица – Условия проведения экспериментов

	Факторы			
Уровень факторов	Р, кН	$K_{\rm q}$, г/см ³	$t_{\scriptscriptstyle M}$, $^{\circ}C$	V _K , M/c
	X_1	X_2	X_3	X_4
Основной (0) Верхний (+1) Нижний (-1) Звездная точка (+\alpha) Звездная точка (-\alpha) Интервалы варьирования: основной по \alpha	1,5 2,0 1,0 2,5 0,5 0,5	0,15 0,20 0,10 0,25 0,05 0,05	60 77,5 42,5 90 25 17,5 35	1,75 2,37 1,12 3,0 0,5 0,62 1,25

Обработка результатов экспериментов, полученных по матрице ЦКОП второго порядка с использованием прикладной программы Mathcad, позволили получить статистические модели (1, 2), определяющие зависимости исследуемого параметра I покрытий, полученных МЭУ с ПВДО, от факторов $X_1 = P$, $X_2 = K_y$, $X_3 = t_M$ и $X_4 = V_K$.

$$\begin{array}{ll} Y_1 = & I_{Fe-10\%V} = 1,455-1,045\cdot X_1 + 6,422\cdot X_2 + 0,0009\cdot X_3 + 0,00061\cdot X_4^* + 0,573\cdot X_1 X_2 + \\ & + 1,914\cdot X_1 X_3 - 0,0094\cdot X_1 X_4^* - 2,337\cdot X_2 X_3 - 0,0014\cdot X_2 X_4^* - 0,00709\cdot X_3 X_4^* + \\ & + 0,08 \ X_1^2 + 6,919\cdot X_2^2 + 0,00092\cdot X_3^2 + 0,00041\cdot X_4^2 \ ^*. \end{array} \tag{1}$$

$$\begin{array}{lll} Y_2 & I_{0 \to X} \, _{6\cdot 2} = 1,207 - 0,819 \cdot X_1 + 5,631 \cdot X_2 - 0,032 \cdot X_3 - 0,0044 \cdot X_4 ^* + 0,119 \cdot X_1 X_2 + \\ & + 1,527 \cdot X_1 X_3 - 0,0030 \cdot X_1 X_4 ^* - 1,128 \cdot X_2 X_3 - 0,0093 \cdot X_2 X_4 ^* - 0,0017 \cdot X_3 X_4 ^* + \\ & + 0,737 \cdot X_1 ^2 + 5,609 \cdot X_2 ^2 + 0,00058 \cdot X_3 ^2 + 0,0023 \cdot X_4 ^2 ^*; \end{array} \tag{2}$$

Установлено, что не все коэффициенты регрессий (1, 2) значимы с 95%-й доверительной вероятностью по критерию Стьюдента (* – коэффициент не значим). Модель адекватна при 5%-м уровне значимости по критерию Фишера.

Анализ статистических моделей (1, 2) показывает, что в принятых пределах варьирования относительная скорость трения не оказывает существенного влияния на интенсивность изнашивания образцов.

Степень влияния факторов на параметр I для различных КМП определяли по величине коэффициентов моделей (1, 2), геометрическая интерпретация которых представлена в виде одномерных сечений в двумерной системе координат (рисунки 1-3). Зависимости, представленные на рисунках 1-3, находятся в факторном пространстве, так как пределы экстраполяции были ограничены условием $-2 < X_i < +2$.

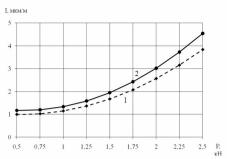


Рисунок 1 — Зависимость интенсивности изнашивания покрытий из КМП Fe-10%V (1) и ФБХ 6-2 (2) от нагрузки P в условиях трения качения со смазкой, загрязненной частицами абразива

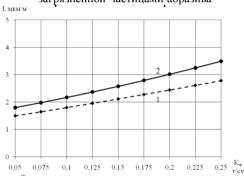


Рисунок 2 — Зависимость интенсивности изнашивания покрытий из КМП Fe-10%V (1) и ФБХ 6-2 (2) от концентрации абразивных частиц в масле Кч в условиях трения качения со смазкой, загрязненной частицами абразива

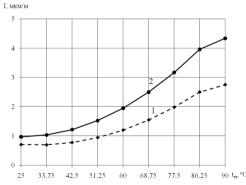


Рисунок 3 – Зависимость интенсивности изнашивания покрытий из КМП Fe-10%V (1) и ФБХ 6-2 (2) от температуры масла в ванне $t_{\scriptscriptstyle M}$ в условиях трения качения со смазкой, загрязненной частицами абразива

Анализ зависимостей интенсивности изнашивания покрытий от нагрузки Р показывает, что износ имеет нелинейных характер, увеличение абразивных примесей в масле приводит интенсивности изнашивания покрытий по зависимости близкой к линейной. При трении со смазкой, загрязненной частицами абразива, интенсивность изнашивания возрастает при нижней величине нагрузки 0,5-0,70 кН. Следует отметить, что наблюдается процесс разрушения трущихся поверхностей, сопровождающийся резким интенсивности тепловыделения и износа образцов. Это обстоятельство, вероятно, связано с влиянием боридных частиц покрытий и продуктов износа, попавших в зону трения.

Выявлено, что с уменьшением концентрации абразивных частиц в масле, влияние температуры масла в ванне на изнашивание покрытий, полученных МЭУ с ПВДО КМП Fe-10%V и ФБХ 6-2, увеличивается. Так, при температуре масла более 53°C интенсивность изнашивания покрытий **у**величивается, нарушением резко что, возможно, связано гидродинамического режима снижением смазки значительным прочности и толщины смазочного слоя.

Из приведенных зависимостей (рисунки 1–3) следует, что наилучшую совместимость имеет пара трения «покрытие из КМП Fe-10%V - сталь ШХ15».

Анализ результатов испытаний износостойкости контртела и покрытий (рисунок 4) показывает, что наибольшей износостойкостью обладают покрытия из порошка Fe-10%V. Износостойкость этого покрытия при

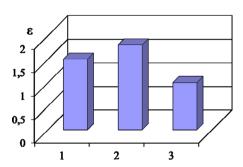


Рисунок 4 — Диаграммы относительной износостойкости покрытий из КМП ФБХ 6-2 (1), Fe-10%V (2) и эталона (3) в условиях трения качения со смазкой, загрязненной частицами абразива

снижается пористость, шероховатость, повышается однородность покрытий. При этом достаточно высокое содержание метастабильного

трении качения со смазкой при наличии частиц абразива в 1,63-1,78 раза выше износостойкости эталона. Износостойкость покрытий из порошка ФБХ 6-2 по сравнению с эталоном больше в 1,32-1,53 раза.

Высокий уровень физико-механических свойств покрытий, полученных МЭУ с ПВДО объясняется тем, что при нанесении покрытий на модуле мод. ЭМПМ-1 повышается однородность содержание метастабильного

аустенита обеспечивает необходимую пластичность основы КМП Fe-10%V и ФБХ-6-2. В результате этого приповерхностные микрообъемы поверхностных слоев способны выдерживать большее количество циклов передеформирования в процессе изнашивания.

Изучение изношенных поверхностей показывает, что на поверхностях имеются участки с отколовшимися частицами, а также выглаженные участки с рисками, расположенными вдоль направления относительного перемещения контактирующих поверхностей. При ЭТОМ поверхности контакта имеет место комбинированное взаимодействие поверхностей – адгезионное И упругопластическое, продуктами изнашивания которых являются равновесные тонкодисперсные частицы. По мере увеличения нагружения образцов происходит нарушение когезионного взаимодействия между частицами, их выкрашивание, а также разрушение отдельных неоднородных частиц. Вместе с тем присутствуют контуры еще не отделившихся частиц на границе участка и мелкие фрагменты их на участке со следами разрушения.

На основании полученных результатов исследований трибологических свойств покрытий, полученных МЭУ с ПВДО на модуле мод. ЭМПМ-1, можно сделать следующие выводы:

- 1 Статистические модели, определяющие зависимости исследуемого параметра интенсивности изнашивания покрытий в условиях трения качения от нагрузки Р показывают, что износ имеет нелинейных характер, а увеличение концентрации абразивных примесей в масле приводит к росту интенсивности изнашивания покрытий по зависимости близкой к линейной. Выявлено, что с уменьшением концентрации абразивных частиц в масле, влияние температуры масла в ванне на изнашивание покрытий, полученных МЭУ с ПВДО КМП Fe-10%V и ФБХ-6-2, возрастает.
- 2 С применением графоаналитического метода двухмерных сечений для принятых условий изнашивания определена оптимальная область работы исследуемых трибосопряжений при трении качения со смазкой, загрязненной частицами абразива: P = 0.50 0.70 кH, $t_{\scriptscriptstyle M} = 27 43$ °C, $K_{\scriptscriptstyle W} = 0.052$ г/см³.
- 3 Результаты износных испытаний показывают, что для пары трения, работающей при трении качения следует использовать покрытия из КМП Fe-10%V.

Список использованной литературы

- 17. Акулович Л.М. Термомеханическое упрочнение деталей в электромагнитном поле. Полоцк : ПГУ, 1999. 240 с.
- 18. Хейфец М.Л., Кожуро Л.М., Мрочек Ж.А. Процессы самоорганизации при формировании поверхностей. Гомель: ИММС НАНБ, 1999. 276 с.

- 19. Технологические основы обработки изделий в магнитном поле / П. И. Ящерицын [и др.]. Минск : ФТИ НАНБ, 1997. 416 с.
- 20. Акулович Л.М., Миранович А.В. Магнитно-электрическое упрочнение поверхностей деталей сельскохозяйственной техники. Минск : БГАТУ, 2016. 236 с.
- 21. Афанасенко, Д.Е. Технологические параметры магнитно-электрического упрочнения рабочих поверхностей валов роторов погружных электронасосов / Д. Е. Афанасенко, Д. С. Щурский, А. В. Миранович // Молодые исследователи агропромышленного и лесного комплексов регионам. Том 2. Часть 1. Технические науки: Сборник научных трудов по результатам работы V ММНПК. Вологда—Молочное: ФГБОУ ВО Вологодская ГМХА, 2020. 7—13 с.
- 22. Афанасенко, Д. Е. Магнитно-электрическое упрочнение дисковых рабочих органов сеялок / Д. Е. Афанасенко, А. В. Миранович // Молодые исследователи агропромышленного и лесного комплексов регионам : Сборник научн. трудов по результатам работы IV Междунар. молодежн. научн.-практич. конф., 25 апреля 2019 года : Том 2. Часть 1. Вологда-Молочное : ФГБОУ ВО Вологодская ГМХА, 2019. С. 24–28.

Summary. Based on the obtained results of studies of the tribological properties of coatings obtained by combined treatment of MEU with PVDO, it was revealed that with a decrease in the concentration of abrasive particles in the oil, the effect of the oil temperature in the bath on the wear of coatings obtained from Fe-10% V and FBH-6-2 powders increases. The operating range of the studied tribounits during rolling friction with lubricant contaminated with abrasive particles: P = 0.50 - 0.70 kN, $t_m = 27 - 43 \, ^{\circ}\text{C}$, $K_{ch} = 0.052 \, \text{g} \, / \, \text{cm}^3$.

УДК: 629.113

Жданко Д.А.¹, кандидат технических наук, доцент; Мухля О.О.², директор ООО «ЭКСПРЕССДИЗЕЛЬ»

¹Учреждение образования «Белорусский государственный аграрный технический университет», г. Минск, Республика Беларусь ²ООО «ЭКСПРЕССДИЗЕЛЬ», г. Логойск, Республика Беларусь

ОСОБЕННОСТИ УСТРОЙСТВА И ЭКСПЛУАТАЦИИ ДВИГАТЕЛЕЙ ММЗ Д-245/Д-260 С ТОПЛИВНОЙ СИСТЕМОЙ COMMON RAIL

Аннотация: общий вид, описание, устройство и схема топливной системы COMMON RAIL. Особенности эксплуатации двигателей Д245/Д260 с дизельной системой COMMON RAIL

Ключевые слова: Двигатель, топливная система, форсунка, ТНВД, особенности эксплуатации.

Большое внимание, при производстве дизельных двигателей, на Минском Моторном Заводе (ММЗ) в Республике Беларусь, уделяется соблюдению экологических норм в части эксплуатации машиннотракторного парка [5].