Приловская // Национальная академия наук Беларуси, Министерство сельского хозяйства и продовольствия Республики Беларусь, РУП «Научно-практический центр Национальной академии наук Беларуси по животноводству». Жодино, 2021. — 21 с.

- 4. Сравнительная эффективность использования в кормлении телят цельного молока и его заменителя / В. Ф. Радчиков, М. Е. Радько, Е. И. Приловская, И.Ф. Горлов, М.И. Сложенкина // Аграрно-пищевые инновации. 2020. № 2 (10). С. 50–61.
- 5. Экструдированный пищевой концентрат в рационах молодняка крупного рогатого скота / В. Ф. Радчиков, С. Л. Шинкарева, В. К. Гурин , В. П. Цай, О. Ф. Ганущенко, А. Н. Кот, Т. Л. Сапсалева // Научно-практический центр Национальной академии наук Беларуси по животноводству, Витебская ордена «Знак Почета» государственная академия ветеринарной медицины. Жодино, 2017. 118 с.
- 6. Радчиков, В. Ф. Использование новых кормовых добавок в рационе молодняка крупного рогатого скота /В. Ф. Радчиков, Е. А. Шнитко // Научные основы повышения продуктивности сельскохозяйственных животных : сб. науч. тр. СКНИИЖ по материалам 6-ой междунар. науч.-практ. конф. (15–17 мая 2013 г.). Краснодар, 2013. Ч. 2. С. 151–155.
- 7. Влияние скармливания молодняку крупного рогатого скота кормов с разной расщепляемостью протеина на физиологическое состояние и переваримость питательных веществ кормов / В. Ф. Радчиков, А. Н. Кот, М. М. Карпеня, Е. А. Левкин, И. В. Сучкова, А. В. Астренков, А. Г. Менякина // В сборнике: Актуальные проблемы ветеринарии и интенсивного животноводства. Сборник трудов международной научно-практической конференции. Институт ветеринарной медицины и биотехнологии. 2023. С. 155–160.

УДК 636.2.034: 575.174.015.3

Л.Ф. Разяпова, канд. с.-х. наук, **Д.О. Смоленцев**, студент

Федеральное государственное бюджетное образовательное учреждение высшего образования «Башкирский государственный аграрный университет», г. Уфа

ИММУНОГЕНЕТИЧЕСКАЯ ХАРАКТЕРИСТИКА ГОЛШТИНСКОГО ЧЕРНО-ПЕСТРОГО СКОТА

Ключевые слова: крупный рогатый скот, голштинская черно-пестрая порода, эритроцитарные антигены, генетика популяций

Keywords: cattle, holstein black-and-white breed, erythrocyte antigens, population genetics

Аннотация: В статье рассмотрена динамика изменений аллелофонда и уровня генетического разнообразия стада голштинской черно-пестрой породы. Анализ полиморфизма эритроцитарных антигенов коров, проводимый ежегодно в течение четырех лет, выявил различия в популяционно-генетических параметрах исследований.

Summary: The article examines the dynamics of changes in the allelofund and the level of genetic diversity of the Holstein black-and-White breed herd. The analysis of polymorphism of erythrocyte antigens in cows, conducted annually for four years, revealed differences in the population-genetic parameters of the studies.

Применение молекулярных методов и генетических маркеров в прогнозировании племенных и продуктивных качеств крупного рогатого скота, одно из крупнейших достижений современной генетики. В качестве генетических маркеров используют признаки: группы крови, типы белков и ферментов крови, полиморфные системы ДНК, лимфоцитарные антигены различных классов, антигены тромбоцитов, аллотипы белков сыворотки крови, полиморфные системы белков молока др. [1,2,6,7].

Исследования групп крови у крупного рогатого скота активно проводились с середины XX века, но их актуальность сохраняется в контексте интеграции с современными геномными методами [3].

Как маркеры наследственного материала антигенные факторы используют в идентификации ценных генотипов животных с целью их сохранения. Это связано с тем, что гены групп крови расположены в тех же хромосомах, в которых находятся гены, ответственные за формирование и проявления признаков молочной продуктивности [4,5]. Целью исследований явилось изучение популяционно-генетических параметров голштинской черно-пестрой породы ООО ПХ «Артемида» Республики Башкортостан. Объектом изучения послужил племенной скот черно-пестрой голштинской породы (n=1553 гол.) в период 2020–2023 гг.

Исследования проводили в лаборатории иммуногенетической экспертизы АО «Башкирское» по племенной работе». Материалом для исследования служила кровь, взятая в пробирки с антикоагулянтом. Группы крови определяли стандартными серологическими тестами с использованием реагентов — моноспецифических сывороток. Антигенные факторы выявлялись реакцией гемолиза. Следующим этапом было проведение исследования по частоте распространения антигенов эритроцитов крови в шести системах у крупного рогатого скота (A, B, C, S, F-V, Z).

Исследуемое поголовье было протестировано на наличие 6 систем групп крови (табл.1): EAA – A1, A2 иZ'; EAB – B1, B2, G1, G2, G3, K, I1, I2, O1, O2, O3, O4, P1, P2, Q, T1, T2, Y1, Y2, A'1, A'2, B', D', E'1, E'2, E'3, F2, G', I', J'1, J'2, K', O', P'1, P'2, Q, Y', B" иG"; EAC –C1, C2, E, R1, R2, W, X1, X2; EAF – FиV; EAS – L', L, S1, S2, H', U1, U', H" иU"; EAZ – Z.

Таблица 1 – Частота встречаемости эритроцитарных антигенов крови

Система		Год				
кровяных	Антиген	2020	2021	2022	2023	
факторов		n=262	n=473	n=499	n=319	
A	A1		0,106	0,236		
	A2	0,324	0,391	0,325	0,677	

	B1	0,004	0,205	0,275	0,429
В	B2	0,504	0,471	0,457	0,517
	G2	0,630	0,368	0,174	0,749
	G3	0,553	0,015	0,048	0,561
	I1	0,000	0,078	0,409	0,150
	I2	0,042	0,110	0,096	0,135
	O1	0,008	0,332	0,467	0,248
	O2	0,130	0,008	0,078	0,621
	O3	0,164	0.112	0,098	0,009
	K	0,101	0,112	0,060	0,031
	T1	0,011	0,195	0,156	0,223
	T2	0,015	0,173	0,130	0,335
	Y2	0,824	0,687	0,082	0,333
	A1'	0,824	0,087	0,341	0,532
	A1 A2'	0,011	0,279	0,194	0,349
	B'				
	D'	0,160	0,144	0,307	0,536
		0,508	0,161	0,156	0,693
	E2'	0,458	0,378	0,246	0,433
	E3'	0,328	0,271	0,092	0,094
	G'	0.046	0,125	0,110	0,433
	I'	0,046	0,061	0,070	0,398
	0'	0,156	0,235	0,110	0,307
	P2'	0,073	0,121	0,214	0,144
	Q'	0,183	0,288	0,583	0,009
	Ŷ'	0,080	0,027	0,156	0,078
	G"	0,584	0,433	0,297	0,461
C	C1	0,168	0,201	0,273	0,063
	C2	0,023	0,235	0,246	0,216
	Е	0,985	0,976	0,860	0,194
	R1	0,004	0,032	0,116	0,223
	R2	0,103	0,156	0,122	0,169
	W	0,218	0,334	0,251	0,251
	X1		0,068	0,120	0,263
	X2	0,294	0,283	0,365	0,549
S	L'	0,244	0,275	0,192	0,483
	L	0,844	0,801	0,335	0,520
	S1	0,553	0,290	0,277	0,056
	S2	0,599	0,233	0,074	0,210
	U	0,107	0,123	0,253	0,320
	H'	0,599	0,732	0,397	0,044
	U'	0,053	0,030	0,142	0,382
	Н"	0,221	0,002	0,078	0,273
	U"	0,416	0,273	0,028	0,658
F-V	F	0,981	0,951	0,894	0,135
	V	0,046		0,030	0,429
Z	Z	0,080	0,169	0,164	0,426

За период иммуногенетических исследований с 2020 по 2023 гг. в шести выявленных системах обнаружено 48 антигенов: в EAA-системе -2, в EAB-системе -26, EAC -8, EAS-системе -9, в системе EAF -2 антигена.

С высокой частотой в 2020 г. в стаде встречались аллели A2 системы A, B2, G2, G3, Y2, D', E2', G" системы B- от 0,554 до 0,824, типичные для чёрно-пёстрого скота из разных регионов России.

Анализ ЕАВ локуса групп крови голштинского черно-пестрого скота в ООО ПХ Артемида выявил антигены, которые уменьшили концентрацию частот за 4 года. Такие антигены, как ОЗ, А2' сократили частоту встречаемости с 0,164 до 0,009 и 0,279 до 0,075 соответственно. Также были определены и антигены, которые практически не изменили свою частоту встречаемости по антигенным факторам крови. Их концентрация частот во все исследуемые периоды составляла в среднем от 30 % до 50 %. Анализ динамики аллелофонда во времени показал расширение общего числа аллелей, участвующих в формировании генотипов ЕАВ-локуса. К примеру, если в 2020 году в стаде отсутствовали антигены I1, K, G', X1, то к 2023 году их концентрация варьировала в диапазоне 0,031–0,433.

Отмечено большое число редких аллелей в системах EAC – Е и EAF – F. В период с 2020 по 2023 гг. аллели C1, Е EAC-системы и аллели F EAF-системы уменьшили свое присутствие в крови, а аллели C1 практически исчез, что связано с голштинизацией поголовья. Аллели C2, R1, X2 системы С в период иммуногенетических исследований частота встречаемости увеличилась от 2 до 53%. На 2020 год аллель X1 отсутствовал, а на 2023 год увеличил свое присутствие на 0,223. В EAF-системе наблюдается на 2020 год небольшое присутствие аллеля V0,046, но в 2021 году данный антиген отсутствует. В 2022 году антиген V присутствует в небольшом объеме тогда, как в 2023 году данный аллель резко увеличивает свое присутствие.

На примере популяции голштинского черно-пестрого скота в четырехлетней динамике мы продемонстрировали изменение показателей аллелофонда и генетического разнообразия, которые зависят от систем отбора и селекционных программ, используемых в хозяйстве. В связи с этим, необходимо осуществлять периодическое тестирование по ДНК-маркерам для обновления знаний о текущем состоянии генетики популяций.

Список использованной литературы

- 1. Валитов, Ф. Р. Генетическая структура пород крупного рогатого скота Республики Башкортостан по антигенным эритроцитарным факторам / Ф. Р. Валитов, И. Ю. Долматова, И. Ф. Юмагузин // Вестник Башкирского государственного аграрного университета. 2019. № 4(52). С. 74—79. DOI 10.31563/1684-7628-2019-52-4-74-79.
- 2. Гладырь, Е. А. Оценка результативности тест-системы на основе микросателлитов в проведении ДНК-экспертизы крупного рогатого скота / Е. А. Гладырь, П. В. Горелова, В. Н. Маурчева и т.д. // Достижения науки и техники АПК. − 2011. №8. C.51–54.

- 3. Долматова, И. Ю. Оценка генетического потенциала крупного рогатого скота по маркерным генам / И. Ю. Долматова, Ф. Р. Валитов // Вестник Башкирского университета. 2015. Т. 20, № 3. С. 850–853.
- 4. Долматова, И. Ю. Полиморфизм генов гормонов у коров бестужевской породы / И. Ю. Долматова, Ф. Р. Валитов // Достижения в генетике, селекции и воспроизводстве сельскохозяйственных животных: Материалы Международной научно-практической конференции, Санкт-Петербург Пушкин, 29–30 мая 2019 года. Санкт-Петербург Пушкин: Всероссийский научно-исследовательский институт генетики и разведения сельскохозяйственных животных РАСХН, 2019. С. 21–22.
- 5. Косяченко, Н. М. Голштинская порода в создании улучшенных генотипов и внутрипородных типов крупного рогатого скота: монография / Н. М. Косяченко, М. В. Абрамова, А. В. Ильина и др. Ярославль: Канцлер, 2020. 157 с.
- 6. Петкевич, Н. С. Совершенствование внутрипородной структуры сычевской и бурой швицкой пород крупного рогатого скота: автореферат диссертации на соискание ученой степени доктора сельскохозяйственных наук: 06.02.01 / Петкевич Николай Семенович. Дубровицы, 2005. 48 с.
- 7. Селионова, М. И. Группы крови в селекции мясного скота / М. И. Селионова, Л. Н. Чижова, М. П. Дубовскова // Животноводство и кормопроизводство. -2015. -№1 (89). С. 14–17.

УЛК 631.352.022:62-86

А.С. Адильшеев, д-р техн. наук,

С. Байжуманов, канд. техн. наук,

ТОО «Научно-производственный центр агроинженерии»,

г. Алматы

E-mail: adanuar@mail.ru

Ж.А.Макатова, канд. техн. наук

HAO «Казахский агротехнический исследовательский университет имени С.Сейфулина», г. Астана

ЗАГОТОВКА СЕНА В УСЛОВИЯХ ЮГА КАЗАХСТАНА: ПРОБЛЕМЫ И ПУТИ РЕШЕНИЯ

Ключевые слова: Сено, кошение, крестьянские и фермерские хозяйства, трактор, жатка травяная, механизм привода, гибкие звенья.

Keywords: Hay, mowing, peasant and farm households, tractor, grass reaper, drive mechanism, flexible links.

Аннотация: В статье представлены результаты анализа заготовки сена в условиях юга Казахстана, где сосредоточена основная доля мелких крестьянских и фермерских хозяйств, с площадью сельхозугодий не более 50 га. Использование высокопроизволительных машин для заготовки сена на таких малых площадях экономически нецелесообразно. Предлагается фронтальная навесная травяная жатка к тракторам тягового класса 1,4,