УДК 621.313

ОБ ИСПОЛЬЗОВАНИИ ВЫСОКОЧАСТОТНОГО ТОКА В ТЕРМИНАЛАХ РЕЛЕЙНОЙ ЗАЩИТЫ ЛИНИЙ ЭЛЕКТРОПЕРЕДАЧ

Чака И.Ю., аспирант, Збродыга В.М., к.т.н., доцент

Белорусский государственный аграрный технический университет, г. Минск

Одним из важных направлений повышения энергетической эффективности сельскохозяйственного производства в Республике Беларусь является модернизация сетей электроснабжения, в том числе оснащение их современными комплексами релейной защиты и автоматики, которые позволяют непрерывно контролировать основные параметры и обеспечивать своевременное срабатывание при возникновении аварийных или ненормальных режимах работы [1].

Авторы рассматривают возможность создания терминалов релейной защиты, пусковые органы которого реагируют на изменение параметров высокочастотного тока, генерируемого в фазные провода линии электропередачи (ЛЭП) от внешнего генератора синусоидального тока.

Воздушная линия электропередачи представляет собой фазные провода (проводники) подвешенные на изоляторах в открытом пространстве. Любой проводник, находящийся в свободном пространстве над поверхностью земли, обладает постоянными значениями ёмкости (C) и индуктивности (L), распределёнными вдоль его длины. Если к середине одного фазного провода подключить источник постоянной ЭДС, то ёмкости проводника зарядятся (рис. 1, a).

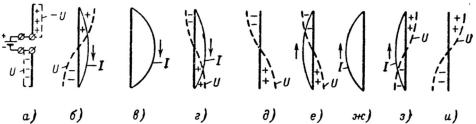


Рисунок 1 - Колебания тока и напряжения в проводнике

При замыкании проводника в середине начнёт протекать ток разряда ёмкостей, который имеет максимальное значение в центре проводника и минимальное значение на его концах, так как величина ёмкости обратно пропорциональна расстоянию между обкладками конденсатора-проводника (рис. 1, б). В индуктивностях провода возникает ЭДС самоиндукции, из-за которой ток изменяется постепенно. На концах проводника возникают максимальные потенциалы, так как в их создании участвует большая часть индуктивности [2, с. 28].

Когда ток течет к середине провода — потенциалы будут положительны, когда от середины — отрицательны. После полного разряда ёмкостей ток достигает максимального значения, а вся электрическая энергия переходит в энергию магнитного поля индуктивности (рис. 1, 8). Ток в индуктивностях провода течёт в том же направлении (рис. 1, 1) и, постепенно уменьшаясь до нуля, перезаряжает ёмкости (рис. 1, 1). Далее процесс протекает аналогично в обратном направлении (рис. 1, 1).

Следовательно, фазный провод можно рассматривать, как колебательный L-C контур (рис. 2).

После заряда конденсатора и последующего включения ключа К он начнет разряжаться на катушку. Так как в катушке возникает ЭДС самоиндукции, ток в ней $(i_{\rm K})$ и напряжение на конденсаторе $(u_{\rm C})$ изменяются постепенно. Когда конденсатор полностью разрядится, то вся энергия его электрического поля перейдет в энергию магнитного поля катушки, а ток в катушке достигнет своего максимального значения (рис. 2, ωt =90°). Ток в катушке не может измениться скачком, и он плавно уменьшается, перезаряжая конденсатор. Когда ток снижается до нуля, то вся энергия магнитного поля катушки переходит в энергию

электрического поля конденсатора (рис. 2, $\omega t=180^{\circ}$). Напряжение на конденсаторе достигает первоначальной величины, но имеет противоположный знак, так как ток в катушке сохраняет своё направление. Затем процесс повторится, но в противоположном направлении.

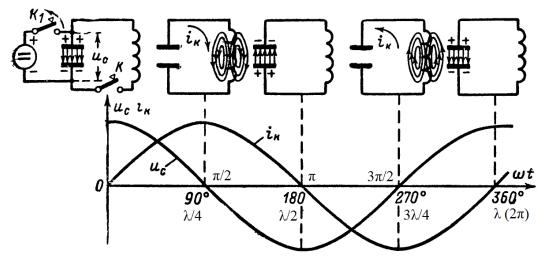


Рисунок 2 - Свободные колебания тока и напряжения

Таким образом, в контуре возникают свободные электрические колебания, создающие стоячие волны тока и напряжения [3, с. 49] с длиной волны λ (рис. 2). Аналогичные явления происходят и при генерации в фазные провода линии электропередачи высокочастотного синусоидального тока от подключенного к линии внешнего генератора.

В линии электропередачи стоячие волны высокочастотного тока и напряжения распределяются по длине фазного провода. Их амплитуды соответствуют максимальным значениям колебаний, происходящих в соответствующих точках ЛЭП (моменты времени t_1 и t_9), а мгновенные значения во времени $t_1 < t_2 < t_3 < t_4 < t_5 < t_6 < t_7 < t_8 < t_9$ могут изменяться от нуля до максимального значения (рис. 3).

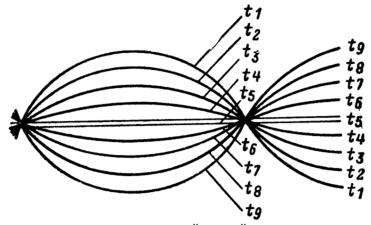


Рисунок 3 - График распределения мгновенных значений стоячей волны высокочастотного тока (напряжения)

При возникновении аварийного или ненормального режима работы ЛЭП, обусловленного нахождением людей или посторонних предметов в электромагнитном поле фазного провода, изменяются его распределенные индуктивность L и емкость C. При этом для подключённого внешнего генератора изменяются параметры высокочастотного тока, что служит сигналом для срабатывания пускового органа релейной защиты.

Вывод

Возможно создание пускового органа для терминалов релейной защиты, реагирующего на изменение параметров тока высокой частоты, генерируемого в линию электропередачи внешним источником, что может повысить быстродействие релейной защиты и способствовать повышению электробезопасности сельских электрических сетей.

Литература

- 1. ОАО «Белэлектромонтажналадка» [Электронный ресурс]. Режим доступа: https://www.bemn.by/production/releynaya-zashchita-signalizatsiya-avtomatika. Дата доступа: 27.08.2024.
- 2. Антенны: Перевод с немецкого / К. Ротхамель. 3-е издание, дополненное Москва: Энергия, 1979. 320 с.
- 3. Специальные функции: учеб. пособие / Н.С. Петросян Москва: Φ ГБОУ ВО МГТУ «СТАНКИН», 2015.-88 с.

УДК 502.36:699.86

СНИЖЕНИЕ ВЫБРОСОВ СО₂ ПРИ РЕАЛИЗАЦИИ МЕРОПРИЯТИЙ ПО ЭНЕРГОСБЕРЕЖЕНИЮ В УЧЕБНЫХ ЗАВЕДЕНИЯХ

Гаркуша К.Э., к.т.н., доцент, Гаркуша К.В.

Белорусский государственный аграрный технический университет, г. Минск

Для определения потенциала энергосбережения в зданиях учебных заведений необходимо проводить энергоаудит, основной целью которого является разработка перечня мероприятий с технико-экономическим обоснованием эффективности использования ТЭР. При реализации международных проектов дополнительно проводится идентификация здания по классу энергоэффективности, принятая в странах ЕС, и оценка сокращения выбросов СО2 для каждого предложенного мероприятия.

Расчет снижения выбросов CO_2 рассмотрим на примере мероприятий, ПО рекомендованных К внедрению результатам энергетического обследования Государственного учреждения образования «СШ № 9 г. Жодино». Энергоаудит в щколе проводился в 2020 году в рамках проекта Всемирного банка «Энергоэффективность общественных зданий в Беларуси».

Согласно нормам [1] выбросы углерода диоксида Mco_2 , т/год, рассчитываются по формуле

$$Mco_2 = 10^{-3} \cdot E^{te} \cdot Kco_2$$

где E^{te} — потребление топлива в общих энергетических единицах, ГДж/год; Kco_2 — коэффициент выбросов углерода диоксида, т CO_2 /ГДж, который следует применять для применякмого типа топлива при предварительных оценках изменения уровня выбросов парниковых газов (определяется по табл. А.1 и А.2 Приложения А [1]).

Потребление топлива в общих энергетических единицах E^{te} , ГДж/год, при переводе использованной тепловой энергии (Гкал), рассчитывается по формуле

$$E^{te} = 4.187 \cdot Q_{v}$$

где 4,187 – коэффициент перевода Гкал в ГДж; Q_y – годовая экономия при отпуске тепловой энергии, Гкал/год.

То же при переводе электрической энергии (МВт-ч) рассчитывается по формуле

$$E^{te} = 3.6 \cdot W_{\rm v}$$