кольцевых полюсных наконечников с A= $(0,2\div1)D$ глубина дефектов на обработанной поверхности уменьшилась до 0,02-0,03 мм. На проволоке полностью отсутствуют следы коррозии, эмульсионных и масляных пленок и механических частиц. Обработанная поверхность отличается высокой отражающей способностью. При съеме материала до 10 мкм в процессе MAO на поверхности проволоки образуется микрорельеф без глубоких и острых рисок; количество дефектов минимально.

- 1. Справочник технолога-машиностроителя // Под. ред. А.Г. Косиловой, Р.К. Мещерякова. М.: Машиностроение, 1986. Т. 1. 645 с.
- 2.Скворчевский Н.Я., Федорович Э.Н., Япцерицын П.И. Эффективность магнитно-абразивной обработки. Минск: Навука і тэхнка, 1991.216 с.
- 3.Shinmura T., Takazawa K., Hatano E. Study on magnetic abrasive finishing // CIRP Annals. 1990. Vol. 39. N 1. P. 325—328.
- 4.Патент США 5044128.

УДК 621.762

СТРУКТУРНЫЕ И ГИДРОДИНАМИЧЕСКИЕ СВОЙСТВА ПОРИСТЫХ ВОЛОКНОВЫХ МАТЕРИАЛОВ ИЗ МЕДНЫХ ОТХОДОВ

К.М. КУДРАВЕЦ

Научный руководитель - ст. преподаватель В.К. КОРНЕЕВА

Пористые волокновые материалы (ПВМ) по сравнению с пористыми порошковыми материалами (ППМ) обладают рядом существенных преимуществ [1]: большей пористостью, проницаемостью, прочностью, упругостью и пластичностью, более эффективной задерживающей и звукопоглощающей способностью и др. Однако если технология изготовления ППМ успешно реализована у нас в республике, то технология получения ПВМ не изучена и не используется для изготовления фильтрующих материалов. Это связано с дороговизной и дефицитом исходного сырья - волокон. В настоящее время с интенсивным развитием металлургии и машиностроения в Республике Беларусь имеются отходы медного кабеля, из которого РУП «Белцветмет» наладил выпуск медной сечки - медных волокон. Все это является хорошей сырьевой основой для выпуска ПВМ.

Целью работы является изучение структурных и гидродинамических свойств ПВМ и установление взаимосвязи между ними.

Анализ исходного сырья позволяет прийти к заключению, что размеры волокон в состоянии поставки можно характеризовать диаметрами от 0,1 до 1,0 мм и длинами от 1,0 до 10,0 мм. Из практики изготовления ППМ известно, что наилучшим комплексом свойств обладают материалы, изготовленные из порошков узких фракций [2]. Следует ожидать, что при изготовлении ПВМ нужно стремиться к использованию волокон одного размера. Поэтому для разделения волокон на фракции нами использовался ситовый метод рассева на ситах с размерами ячеек 1,6; 1,0; 0,63; 0,4; 0,315 и 0,2 мм. На рисунке 1 приведены фотографии волокон различного гранулометрического состава.

Рисунок 1 – Фотографии волокон различного гранулометрического состава: а – менее (-0,2...+0,1), б – (-0,315...+0,2), в – (-0,4...+0,315), г – (-0,63...+0,4), д – (-1,0...+0,63), е – (-1,6...+1,0) мм

Образцы в форме дисков диаметром 30 мм и толщиной 5 мм из медных волокон следующего фракционного состава: (-0,2...+0,1), (-0,315...+0,2), (-0,4...+0,315), (-0,63...+0,4), (-1,0...+0,63), (-1,6+1,0) мм прессовались в стальной пресс-форме при различных давлениях прессования, спекались в электропечи в атмосфере эндогаза при температуре спекания $1010\pm10^{\circ}$ С. Время прохождения образцами зоны нагрева печи составляло 1,5 ч.

Структурные и гидродинамические свойства образцов определяли: пористость образцов - расчетным методом (ГОСТ 18898-89),

размеры пор - методом вытеснения жидкости (ГОСТ 26849-93), коэффициент проницаемости - по ГОСТ 25283-93. Равномерность порораспределения характеризовали параметром A, равным отношению среднего размера пор к максимальному.

В таблице 1 приведены установленные структурные (пористость Π , максимальные $d_{\text{п max}}$ и средние $d_{\text{п ср}}$ размеры пор) и гидродинамические (коэффициент проницаемости k) свойства экспериментальных образцов ПВМ из медных волокон в зависимости от размера волокон $d_{\text{в}}$ и давления прессования P.

Таблица 1 – Структурные и гидродинамические свойства экспериментальных образцов ПВМ из медных волокон

№ п/п	$d_{\scriptscriptstyle m B}$, mm	Р, МПа	П, %	d _{п тах} , мкм	<i>d</i> _{пср} , мкм	k, mkm²	A
1	(-0,2+0,1)	200	20,4	29	11	0,6	0,38
2		125	32,0	43	18	3,2	0,42
2 3		75	40,8	57	24	7,1	0,42
4		40	51,1	71	32	15,9	0,45
5		15	62,0	107	40	31,6	0,37
1	(0,315+0,2)	200	20,4	43	23	3,2	0,54
2		120	31,8	86	32	10,1	0,37
2 3		70	42,2	120	43	23,8	0,36
4		35	52,3	164	54	46,7	0,33
5		15	59,1	210	66	80,3	0,31
1	(0,4+0,315)	220	19,6	58	37	8,3	0,64
2		130	31,2	107	52	26,1	0,49
3		70	42,0	142	70	63,2	0,49
4		35	48,9	206	83	106,2	0,40
1	(-0,63+0,4)	215	21,2	72	39	9,8	0,54
2		130	32,6	121	56	31,9	0,46
$\frac{2}{3}$		75	41,0	164	77	76,4	0,47
4		40	51,3	243	96	147,5	0,40
1	(-1,0+0,63)	325	18,2	93	45	11,6	0,48
2		180	30,6	172	63	38,3	0,37
2 3		90	41,3	205	83	89,4	0,40
1	(-1,6+1,0)	325	19,6	115	45	12,4	0,39
2		190	30,1	311	68	43,1	0,22

Анализ зависимостей структурных и гидродинамических свойств ПВМ, полученных из отходов, показывает возможность варьирования пористостью от 20 до 60%, максимальными размерами пор - от 30 до 310 мкм, средними - от 10 до 100 мкм и коэффициентом проницаемости - от 1 до 150 мкм 2 , что в конечном итоге позволяет создавать фильтрующие

материалы с требуемыми эксплуатационными характеристиками.

- 1. Косторнов, А.Г. Проницаемые металлические волокновые материалы / А.Г. Косторнов. – Киев: Техника, 1983. – 123 с.
- 2. Витязь, П.А. Пористые порошковые материалы и изделия из них / П.А. Витязь, В.М. Капцевич, В.К. Шелет. Минск: Выштэйшая школа, 1987.-161 с.