УДК 631.372

ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ ЭКСПЛУАТАЦИИ ЭНЕРГЕТИЧЕСКИХ СРЕДСТВ

Т.А. Непарко, к.т.н., доцент, В.И. Жебрун, студент

УО «Белорусский государственный аграрный технический университет», г. Минск, Республика Беларусь

Введение

Эффективность эксплуатации энергетических средств (тракторов) во многом зависит от оптимального режима их работы, при котором достигаются максимальная теоретическая производительность и минимальный расход топлива на единицу объема выполненной работы (гектарный расход топлива). При этом первостепенное значение имеют методы определения таких значений тягового усилия $P_{_{\rm T_0}}$ и скорости движения v_0 , при которых достигаются максимальные значения тягового КПД $\eta_{_{\rm T}}$ и тяговой мощности $N_{_{\rm T}}$. Значения $P_{_{\rm T_0}}$ и v_0 могут быть определены графически по тяговой характеристике, построенной для данного трактора в конкретных условиях его работы. Недостаток этого метода состоит в том, что его нельзя применять для условий, отличающихся от тех, которым соответствует тяговая характеристика. Целесообразен расчетный метод определения $P_{_{\rm T_0}}$ и v_0 , позволяющий находить эти величины для любых условий работы трактора.

Основная часть

Из анализа потенциальной тяговой характеристики трактора следует, что $\eta_{\scriptscriptstyle T}$ максимален, если суммарные потери мощности на качение и буксование минимальны [1], т.е.

$$\eta_{xc} = \eta_f \eta_{\delta} = \max,$$

где $\eta_{\rm xc}$ – КПД ходовой части системы; η_f , η_δ – КПД, учитывающие потери мощности соответственно на качение и буксование, или

$$\eta_{xc} = \frac{P_{T_0}}{P_{T_0} + fG} (1 - \delta) = \max,$$

где f – коэффициент сопротивления качению; G – вес трактора, кH; δ – коэффициент буксования.

Экспериментальные данные об изменении f колесных тракторов Беларус 800/820 от $P_{_{\rm T}}$ показывают, что если $P_{_{\rm T}}$ соответствуют максимальному тяговому КПД, то величина f изменяется незначительно. Поэтому для получения аналитической зависимости значений f и δ от $P_{_{\rm T}}$ можно предположить, что f не зависит от $P_{_{\rm T}}$.

Удовлетворительная сходимость с экспериментальными данными для расчета коэффициента буксования получена по формуле:

$$\delta = ap + bp^2$$
,

где a, b – постоянные коэффициенты; p – постоянный параметр, $p = \frac{P_{\tau}}{\lambda \mu G}; \quad \lambda$ – коэффициент, учитывающий нагрузку на ведущие колеса; μ – коэффициент сцепления.

Функция, исследуемая на максимум, имеет вид:

$$\eta_{xe} = \frac{P_{\text{T}}}{P_{\text{T}} + fG} \left(1 - \frac{aP_{\text{T}}}{\lambda \mu G} - \frac{bP_{\text{T}}^2}{\lambda^2 \mu^2 G^2} \right).$$

Из этого следует, что тяговое усилие равно:

$$P_{\tau_0} = \left\{ \frac{\left(C + AB/3 - 2A^3/27\right)/2 + \left(C + AB/3 - 2A^2/27\right)^2/4 - \left(A^2/3 - B\right)^3/27\right\}^{1/2}}{+\left[\left(C + AB/3 - 2A^2/27\right)^2/4 - \left(A^2/3 - B\right)^3/27\right]^{1/2}} \right\}^{-A/3}, \quad (1)$$

где $A = G(a\lambda\mu + 3bf)/2b$; $B = af\lambda\mu G^2/b$; $C = f\lambda^2\mu^2G^3/2b$.

Расчет тягового усилия $P'_{_{{\rm T}_0}}$, соответствующего допустимому по агротехническим требованиям коэффициенту буксования $[\delta]$, произведем по формуле

$$P'_{\mathbf{r}_0} = \left[a\lambda\mu G / 2b \right] \left(\sqrt{1 + 4b[\delta]a^2} - 1 \right).$$

Если определено $P_{_{\mathrm{T}_0}}$, то для расчета v_0 можно воспользоваться известной формулой

$$N_{\rm H} = \frac{\left(P_{\rm T_0} + fG\right)v_0}{3.6\eta_{\rm m}\chi_{\rm p}},\tag{2}$$

где $N_{_{\rm H}}$ – номинальная мощность двигателя, кВт; $\eta_{_{\rm TP}}$ – КПД трансмиссии; $\chi_{_{\rm 3}}$ – коэффициент эксплуатационной загрузки двигателя.

Полученная из формулы (2) скорость v_0 – расчетная, т.е. теоретическая (без учета буксования), соответствующая номинальной частоте вращения коленчатого вала. Так как в технической характеристике трактора приведены значения расчетных скоростей на всех передачах, то по v_0 можно выбрать оптимальную передачу.

О степени соответствия расчетных значений $P_{_{T_0}}$ экспериментальным данным можно судить по таблице. Расчетные значения получены по формуле (1) при следующих исходных данных: $a=b=0,13; \lambda=0,655$ для трактора Беларус 800 и $\lambda=0,623$ для трактора Беларус 820; $\mu=0,6; f=0,09$.

10		
Трактор (условия испытаний на стерне)	$P_{_{\mathrm{T}_{0}}}$, кН	
	расчетное	экспериментальное
Беларус 800 без балласта	8,88	8,85
Беларус 820 без балласта	13,49	13,40
Беларус 820 с балластом	17 27	17.75

Таблица – Тяговое усилие $P_{_{\mathrm{T}_{\mathrm{o}}}}$ в условиях испытаний

Значительный практический интерес представляет вопрос о влиянии на $P_{_{\mathrm{T}_0}}$ и δ_0 при максимальном тяговом КПД различных конструктивных и эксплуатационных факторов. Одновременное увеличение $P_{_{\mathrm{T}_0}}$ и уменьшение δ_0 достигается повышением коэффициентов λ и μ . К такому же результату приводит совершенствование ходовых систем с целью улучшения сцепления, что соответствует уменьшению коэффициентов a и b (для колесных тракторов a=b=0,13). Увеличение веса трактора приводит к возрастанию $P_{_{\mathrm{T}_0}}$ при неизменном δ_0 .

Заключение

Приведенные методы позволяют находить параметры оптимального режима работы трактора и определять пути их совершенствования.

Литература

- 1. Эксплуатация сельскохозяйственной техники: Справочные материалы / А.В. Новиков [и др.]. Ч. 1. Мн.: Государственное учреждение «Учебно-методический центр Минсельхозпрода», 2008. 107 с.
- 2. Непарко Т.А. Повышение эффективности производства картофеля обоснованием рациональной структуры и состава применяемых комплексов машин. Автореф. канд. дисс., Минск, 2004.

УДК 631.33

О ПРИМЕНЕНИИ СРЕДСТВ ХИМИЗАЦИИ В ЗЕМЛЕДЕЛИИ

Ю.И. Томкунас, к.т.н., доцент, Т.М. Чумак, Д.И. Сушко

УО «Белорусский государственный аграрный технический университет», г. Минск, Республика Беларусь

Введение

Мировая практика свидетельствует, что 70 % урожая создается за счёт средств химизации, половина этой величины приходится на защиту растений [1].

Между тем все средства химизации – потенциально опасные вещества. Безответственное, неграмотное отношение к их применению не только снижает эффективность, но и ухудшает качество растениеводческой продукции.

При рациональном применении средств химизации достигается максимальный эффект. Анализ технологических карт на возделывание основных сельскохозяйственных культур по интенсивным технологиям свидетельствуют о том, что от 50 до 70 % в них занимают операции, связанные с применением минеральных и органических удобрений, пестицидов и известковых материалов [2].