ПЕРЕРАБОТКА И УПРАВЛЕНИЕ КАЧЕСТВОМ СЕЛЬСКОХОЗЯЙСТВЕННОЙ ПРОДУКЦИИ

влаги, дозирование, замораживание, упаковку, маркировку, транспортирование потребителю или на склад готовой продукции для хранения.

Установлено, что гарнирный картофель имеет калорийность — 75,6 кКал и состоит из белков — 1,988 %, жиры — 0,406 %, углеводы — 15,849 %, органические кислоты — 0,186 %, пищевые волокна — 1,406 %, воду — 78 %, а также витамины (A, β -каротин, B₁, B₂, B₅, B₆, B₉, C, E, H, PP), макроэлементы (K, Ca, Mg, Na, S, P, Cl) и микроэлементы (B, V, Fe, I, Co, Mn, Cu, Mo, Se, F, Cr, Zn).

Технология производства гарнирного картофеля быстрозамороженного перспективна для внедрения на российских предприятиях картофелеперерабатывающей отрасли.

Список использованной литературы

- 1. Пигулевский, Н.А. Линия для производства замороженного гарнирного картофеля: А.с. № 818589. SU, МПК7 А 23L 1/216 / Н.А. Пигулевский, А.М. Мазур, В.Д. Потапов, В.И. Михайловский, В.В. Хилимон, Р.Л. Ковганко, А.Д. Сойфер; заявка №2701802/28-13; заявитель Научнопроизводственное объединение по производству продуктов из картофеля; заявл. 21.12.1978; опубл. 07.04.1981 // Государственный комитет СССР по делам изобретений и открытий. Бюл. 13. 1981. 3 с.
- 2. Залецкий, В.Н. Способ производства быстрозамороженного гарнирного картофеля: А.с. № 969235. SU, МПК7 А 23L 1/216, А 23В 7/04 / В.Н. Залецкий, А.М. Мазур, Р.Л. Ковганко, Ф.И. Субоч, И.П. Забаштанский, А.Д. Сойфер, Б.Г. Залецкая, Т.А. Трушина; заявка №3275057; заявитель Научно-производственное объединение по производству продуктов из картофеля; заявл. 09.04.1981; опубл. 30.10.1982 // Государственный комитет СССР по делам изобретений и открытий. Бюл. 40. 1982. 4 с.
- 3. Квасенков, О.И. Способ получения полуфабриката гарнирного картофеля: Патент № 2250038. RU, МПК7 A 23L 1/216, 3/3508, 3/36 / О.И. Квасенков; заявка №2003118696/04; заявитель О.И. Квасенков; заявл. 23.06.2003; опубл. 20.12.2004 // Государственный реестр изобретений Российской Федерации. Бюл. 11.-2004.-4 с.
- 4. Шабета, М.П. Обжаренный гарнирный картофель / М.П. Шабета, З.А. Соколова, Н.И. Пашкевич // Пищевая промышленость. -2005. -№2. C. 43.
- 5. Серпова, О.С. Ресурсосберегающие технологии переработки картофеля: Науч. ан. обзор / О.С. Серпова, Л.А. Борченкова. М.: ФГНУ «Росинформагротех», 2009 84 с.
- 6. Ловкис, З.В. Картофель и картофелепродукты: наука и технология / З.В. Ловкис, В.В. Литвяк, Н.Н. Петюшев, И.М. Почицкая; РУП «Научно-практический центр Национальной академии наук Беларуси по продовольствию». Минск: Беларуская навука, 2008 г. 537 с.
- 7. Литвяк, В.В. Картофель и технологии его глубокой переработки / В.В. Литвяк, Н.Д. Лукин, Е.А. Симаков, В.А. Дегтярёв, Л.Г. Кузьмина, Л.Б. Кузина; Всероссийский научно-исследовательский институт картофельного хозяйства им. А.Г. Лорха; Всероссийский научно-исследовательский институт крахмалопродуктов филиал ФГБНУ «ФНЦ пищевых систем им. В.М. Горбатова» РАН. М.: ФЛИНТА, 2021. 896 с.
- 8. Якубович, Е.Н. Устойчивое развитие картофелепродуктового подкомплекса Брянской области / Е.Н. Якубович // Известия Оренбургского государственного аграрного университета. 2012. N2. С. 143—145.
- 9. Тульчеев, В.В. Перспективы кооперации и агропромышленной интеграции в картофелепродуктовом и овощном подкомплексах АПК Российской Федерации / В.В. Тульчеев, С.В. Жевора, Д.Н. Лукин // Достижения науки и техники АПК. -2016. T. 30, №12. C. 113–116.

УДК 637.531.45

Груданов В.Я., доктор технических наук, профессор, Торган А.Б., кандидат технических наук, доцент, Атрощик М.Д., Мурог А.В. Белорусский государственный аграрный технический университет, г. Минск

РАЗРАБОТКА УСОВЕРШЕНСТВОВАННОЙ КОНСТРУКЦИИ РЕЖУЩЕГО МЕХАНИЗМА ЭМУЛЬСИТАТОРА

При скользящем резании сопротивление перерезанию волокон и стенок клеток продукта уменьшается с возрастанием угла скольжения или, что то же самое, – с увеличением коэффициента ско-

Секция 1. ПЕРЕРАБОТКА И ХРАНЕНИЕ СЕЛЬСКОХОЗЯЙСТВЕННОЙ ПРОДУКЦИИ

льжения и длины режущей кромки лезвия [1]. Поэтому в системе нож-решетка необходимо использовать не только законы скользящего резания, но и максимальную длину режущей кромки лезвия. На рисунке 1 представлена схема определения коэффициента скольжения по длине прямолинейного лезвия в трущейся паре нож-решетка [2].

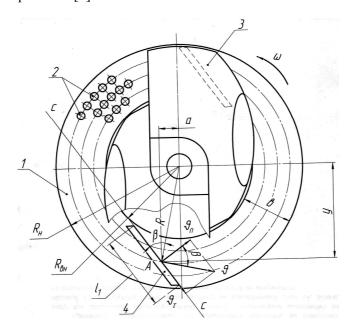


Рисунок 1. Схема определения коэффициента скольжения по длине прямолинейного лезвия: 1 — ножевая решетка; 2 — отверстие перфорации; 3 — вращающийся нож; 4 — лезвие ножа; l — длина режущей кромки лезвия; $R_{\rm H}$ — наружный радиус решетки; $R_{\rm BH}$ — внутренний радиус решетки; C-C — касательная к внутренней окружности $R_{\rm BH}$; V — линейная скорость произвольной точки A; V_n , V_r — нормальная и составляющая линейной скорости V; β — угол скольжения; α , β — координаты точки α ; β — ширина кольца

Как видно из рисунка 1 коэффициент скольжения K_{β} определяется по формуле

$$K_{\beta} = \frac{V_r}{V_r} = tg\beta \frac{a}{v} \tag{1}$$

Режущая кромка лезвия 4 вращающегося ножа 3 проходит по касательной C-C к внутренней окружности $R_{\rm вн}$ и в этом случае длина l режущей кромки лезвия 4 будет максимальной, а коэффициент скольжения K_{β} — наибольшим.

В точке \mathcal{B} (y=0), $V_n=0$ и $\mathcal{K}_\beta=\infty$, т.е. резания не будет. При увеличении у \mathcal{K}_β уменьшается. При у = const \mathcal{K}_β возрастает с увеличением а. Если а = 0

 $K_{\beta} = 0$ – имеет место рубящее резание.

Таким образом, расположение режущей кромки лезвия наклонено по касательной СС к внутренней окружности $R_{\rm вн}$ ножевой решетки позволяет получить наибольшую длину 1 лезвия 4 и, как следствие, создать наилучшие условия для скользящего резания и процесса измельчения в целом.

С увеличением коэффициента скольжения K_{β} суммарная сил сопротивления перерезанию продукта P и ее нормальная составляющая P_n уменьшаются, что и приводит к снижению энергозатрат на процесс измельчения.

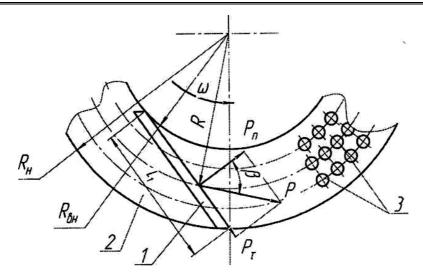


Рисунок 2. Схема определения длины режущей кромки лезвия ножа: P – сила сопротивления перерезанию продукта; P_n – нормальная составляющая силы P; P_{τ} – касательная составляющая силы P; β – угол скольжения

Нормальная P_n и касательная P_{τ} составляющие сопротивления перерезанию P (рисунке 2) определяется по формулам:

$$P_n = P\cos\beta = ql\cos^2\beta \, , \tag{2}$$

где q — удельное сопротивление продукта на единицу длины лезвия, Н·м; l — длина режущей кромки лезвия ножа, участвующая в отрезании слоя продукта, м.

$$P = ql \frac{1}{\sqrt{1 + K_{\beta}^2}} \tag{4}$$

$$P_n = ql \frac{1}{1 + K_\beta^2} \tag{5}$$

$$P_{\tau} = ql \frac{K_{\beta}^2}{1 + K_{\beta}^2}; \tag{6}$$

Из формул (4 - 6) следует, что с увеличением коэффициента скольжения K_{β} суммарная сила сопротивления перерезания P и ее нормальная составляющая P_n уменьшаются, причем P_n более значительно, чем P. Касательная составляющая P_{τ} вначале возрастает, достигая максимума при $K_{\beta}=1$, после чего убывает, приближаясь по величине к P.

Из рисунка 2 определяем оптимальную длину режущей кромки лезвия ножа:

$$L = \sqrt{b^2 + 2R_{\scriptscriptstyle H}} \left(R_{\scriptscriptstyle H} - b \right) \tag{7}$$

где b — ширина кольца (рабочей поверхности решетки).

Секция 1. ПЕРЕРАБОТКА И ХРАНЕНИЕ СЕЛЬСКОХОЗЯЙСТВЕННОЙ ПРОДУКЦИИ

Список использованной литературы

- 1. Ивашов, В.И. Технологическое оборудование предприятий мясной промышленности: учебное пособие: в 2 ч. / В.И. Ивашов.— СПб.: ГИОРД, 2007. Ч. 2: Оборудование для переработки мяса. 464 с.
- 2. Бредихин, С.А. Технологическое оборудование мясокомбинатов / С.А. Бредихин. М.: Колосс, 1997. 392 с.

УДК 664.2

Литвяк В.В., доктор технических наук, доцент

Всероссийский научно-исследовательский институт крахмала и переработки крахмалсодержащего сырья – филиал Федерального исследовательского центра картофеля имени А.Г. Лорха, п. Красково

ОСОБЕННОСТИ ТЕХНОЛОГИИ ПРОМЫШЛЕННОГО ПОЛУЧЕНИЯ ПОЛУФАБРИКАТА КРЕКЕРОВ КАРТОФЕЛЬНЫХ

В последний период особенны интерес представляют технология промышленного получения крекеров из нетрадиционного сырья, например, крекеры картофельные – полученные из картофеля (свежего и/или сухого) и/или картофельного пюре (свежего и/или сухого) [1–4].

Цель исследования является рассмотрение технологии промышленного получения полуфабриката крекеров картофельных.

Объект и методы исследований. Объект исследований. Объектом исследований являлся крекер картофельный.

Методы физико-химических исследований. Определение массовой доли белка проводили методом Кьельдаля – по ГОСТ 34454, углеводов – по ГОСТ 26176, жиров – по ГОСТ 15113.9, а пищевые волокна – по ГОСТ P 54014.

Результаты исследований. Общая характеристика продукта. Полуфабрикат крекеров – картофелепродукт, полученный из смеси картофельного пюре, крахмала и соли с последующей формовкой полученной смеси в жгуты, варкой их, резкой на ломтики и сушкой до содержания сухих веществ 10–12 %.

Для получения готового продукта – полуфабриката крекеров обжаривают при погружении на 5-6 с в масло (жир), нагретое до 190-200 °C.

Крекеры употребляют, в виде сухого завтрака, как гарнир ко вторым мясным и рыбным блюдам, вместо гренок к первым блюдам, а также в виде закуски к напиткам: пиву, соку и др.

Сырье и материалы. Для производства полуфабриката крекеров используют следующее сырье и материалы: картофель свежий для переработки на продукты питания по ГОСТ 26832 и ГОСТ 7176; картофель сушеный не соответствующий требованиям только по размеру (мелочь) по ГОСТ 28432; крахмал картофельный сухой не ниже 1 сорта или крахмал картофельный фугованный с влажностью не более 40% по ГОСТ Р 53876; крахмал кукурузный по ГОСТ 32159; соль поваренная пищевая йодированная не ниже первого сорта, помолов №0 и №1 по ГОСТ Р 51574.

Технологический процесс (промышленная переработка). Технологическая схема производства полуфабриката крекеров представлена на рисунке 1.