УДК 664.346

Терёхина А.В. кандидат технических наук, Щербаков М.Н.

Воронежской государственный университет инженерных технологий, Российская Федерация

ПЕРСПЕКТИВА ИСПОЛЬЗОВАНИЯ МАСЛА ИЗ СЕМЯН ЧИА В СОСТАВЕ МАЙОНЕЗНЫХ СОУСОВ

Новый век диктует новые правила, задает другие тренды. Ключевым моментом счастливой и долгой жизни является образ жизни и питание. Если мы не можем менять образ жизни людей, то мы можем помочь ему предоставить вкусные и безопасные продукты, которые могут составить его регулярный рацион питания. Идеальный баланс, когда человек кушает вкусную и аппетитную пищу, и в то же самое время его организм получает массу пользы, нивелируя негативное влияние окружающей среды, плохой экологии, стресса и дефицита полезных микро-, макроэлементов, витаминов и минералов. Соусы стали занимать важное место в питании обычного человека. Соусы сделали еду вкуснее. Но вредность большинства соусов отталкивает людей из-за большой вероятности проблем со здоровьем в будущем. При замене некоторых составляющих или добавлении новых ингредиентов, можно получить соус с более высоким показателем полезности и безопасности для человеческого организма [1, 2, 3].

Проводилось исследование в 2018 году касательно дефицита жирных кислот среди всех возрастных групп. Одним из показателей серьезного дефицита стала нехватка Омега-3. В качестве последствий дефицита наблюдаются метаболические и гипоксические нарушения, увеличивается риск повреждение репродуктивной системы, в частности развитие бесплодия, прерывание беременности, повышенный риск отклонения или мутаций плода [4].

В качестве возможных решений видится добавление функционального ингредиента в наиболее распространенные продукты питания. Наиболее важным считается сбалансированность жирных кислот, которая может быть достигнута сбалансированностью составов майонезных соусов. Дефицит омега-3 может быть компенсирован введением в состав масла семян чиа.

В России существуют производства масла из семян чиа, а также существуют большое количество отечественных поставщиков сырья вроде ООО «КОМСЕРВИС», ООО «СЕМУШКА», ООО «АНБ» и десятки других официальных компаний, и это не считая ещё индивидуальных предпринимателей. Получение самих семян чиа, и масел также отвечают политике импортозамещения. Также активно идут исследования касательно селекции семян чиа для выращивания в более сложных условия, например в западной Сибири, так в сокращении вегетационного периода, что позволяет предположить большую урожайность, и в конце концов снижение стоимости продукции на рынке [4]. Это отлично вписывается в тренды производства отечественного и безопасного продукта внутри страны. Также открывает возможность для использования семян чиа в других продуктах питания функционального назначения.

Если сравнивать жирнокислотный состав масла из семян чиа с маслом зародышей кукурузы и масла из семян подсолнечника (таблица 1), то можно наблюдать наибольшее значение альфа-линоленовой кислоты (53,2 %) у масла из семян чиа, что в десятки раз больше, чем у подсолнечного и кукурузного масла. Содержание линолевой кислоты у кукурузного масла (54,8 %) и подсолнечного масла (52,1 %) почти вдвое превосходят количество его же в масле из смеян чиа (23 %). Наличие олеиновой кислоты в масле из семян чиа в небольшом количестве (8,3 %) дает возможность более гармоничного применения, чем кукурузное масло (32 %) и подсолнечное (37,4 %). Также наличие альфа-линолевой кислота, а точнее её наибольшее значение позволяют использовать масло из семян чиа в качестве источника омега-3 жирных кислот, и использовать его в качестве функционального компонента в производстве продуктов питания.

Таблица 1. Жирнокислотный состав

Показатель	Кукурузное масло [7]	Масло из семян чиа [5]	Подсолнечное масло [6]
14:0	0,061	0,197	0,182
16:0	9,339	7,529	6,129
16:1	0,083	0,098	0,245
18:0	2,501	4,072	2,851
18:1	32,081	8,371	37,410
18:2	54,888	23,013	52,127
20:0	0,375	0,921	0,316
18:3	0,839	53,298	0,083
20:1	0,280	0,731	0,171
22:0	0,337	0,856	0,239
24:0	0,216	0,914	0,152

ПЕРЕРАБОТКА И УПРАВЛЕНИЕ КАЧЕСТВОМ СЕЛЬСКОХОЗЯЙСТВЕННОЙ ПРОДУКЦИИ

Высокие полезные свойства масла из семян чиа, потребность в здоровых и безопасных продуктах питания, успехи в селекции и выращивании культуры в $P\Phi$ создают большие перспективы для использования исследуемого масла в качестве источника омега-3 жирных кислот.

Список использованной литературы

- 1. Chen L.H., Wang Y.F., Xu Q.H., Chen S.S. Omega-3 fatty acids as a treatment for non-alcoholic fatty liver disease in children: A systematic review and meta-analysis of randomized controlled trials. Clin Nutr. 2018. –37(2). P. 516–21.
- 2. Spooner M.H., Jump D.B. Omega-3 fatty acids and nonalcoholic fatty liver disease in adults and children: where do we stand? Curr Opin Clin Nutr Metab Care. 2019. 22(2). P. 103–10.
- 3. Калинченко С.Ю., Соловьев Д.О., Аветисян Л.А., Белов Д.А., Парамонов С.А., Нижник А.Н. Распространенность дефицита Омега-3 жирных кислот в различных возрастных группах. Вопросы диетологии. -2018.-8(1).-C. 11-16.
- 4. Kazydub N.G., Pinkal A.V., Chernov R.V., Nadtochii L.A. Possibilities for the introduction and breeding of chia (salvia hispanica l.) In the southern forest-steppe of western Siberia. Siberian Journal of Life Sciences and Agriculture. Vol. 14, N4. 2022. p. 354–369.
- 5. Бутова, С.В. Исследование показателей растительных масел из малораспространенного сырья / С.В. Бутова, М.Н. Шахова, Е.В. Панина // Технологии и товароведение сельскохозяйственной продукции. 2018. № 1(10). С. 38–43.
- 6. Болгова, М.А. Сравнение жирнокислотного состава нерафинированного и рафинированного подсолнечных масел / М. А. Болгова, Н. Л. Клейменова, И. Н. Болгова // Современная биотехнология: актуальные вопросы, инновации и достижения: Сборник тезисов Всероссийской с международным участием онлайн-конференции, Кемерово, 21 октября 2020 года / Под общей редакцией А.Ю. Просекова. Кемерово: Кемеровский государственный университет, 2020. С. 35–36.
- 7. Ильина, Г.Н. Исследование устойчивости растительных масел к окислению при разработке функциональных масложировых продуктов / Г.Н. Ильина, С.А. Ламоткин // Молодежь в науке 2016 : сборник материалов Международной конференции молодых ученых: в 2 частях, Минск, 22–25 ноября 2016 года / Национальная академия наук Беларуси.

УДК 633.8

Варивода А.А., кандидат технических наук, доцент, Терещенко А.А. Кубанский государственный аграрный университет им. И.Т. Трубилина, г. Краснодар, Российская Федерация

МОДЕЛИРОВАНИЕ ПЛОДОВОГО ПОЛУФАБРИКАТА НА ОСНОВЕ ПЛОДОВ АЙВЫ И СМОРОДИНЫ

Сбалансированное питание является одним из важнейших условий здоровья человека, которое влияет на его работоспособность, иммунную систему, и продолжительность жизни.

Здоровое сбалансированное питание предполагает употребление биологически активных продуктов. Айву выделяют среди других плодов из-за высокого содержания биологически активных веществ [1]. Айва хорошо сохраняет свои функциональные свойства и после тепловой обработки и является превосходным сырьем для полуфабрикатов. В виде полуфабриката айва может прекрасно служить как ингредиент для производства кондитерских изделий, начинок для выпечек, основой для джемов, смузи и детского питания.

Смородина и пюре из нее является достаточно хорошим физиологическим функциональным наполнителем для многих изделий питания, ведь содержит в своем составе много макро- и микроэлементов, пищевых волокон, полифенолов, органических кислот, витаминов и др. Использование смородинового пюре в технологии изготовление айвового полуфабриката способствует обогащению витаминно-минерального состава и повышению его органолептических свойств [1].

Задача моделирования состояла в определении ингредиентного состава рецептуры замороженного полуфабриката с применением различных видов сырья, которые имеют определенные органолептические характеристики и высокую витаминную ценность.

Для изготовления композиционной смеси были отобраны плоды айвы типовые по форме и окраске для данного помологического сорта, без повреждений согласно ГОСТ 21715-2013. Собирали плоды в потребительской степени спелости.