- применение регуляторов напряжения;
- использование светильников с двухступенчатыми ЭмПРА.

Отключение фазы в пункте питания приводит к несимметричному режиму и появлению значительной неравномерности освещенности, но является относительно простым и эффективным способом экономии электроэнергии.

Другие способы экономии электроэнергии требуют установки дополнительного оборудования. Регуляторы напряжения в пункте питания позволяют поддерживать напряжения на необходимом уровне для обеспечения оптимальных режимов работы. Ночной режим реализуется путем ступенчатого снижения напряжение в пункте питания. При этом важным условием является то, что зажигание ламп ДНаТ необходимо производить при номинальном напряжении.

При регулируемом снижении напряжения происходит уменьшение светового потока источников света, неравномерность освещенности проявляется в меньшей степени, чем при отключении части светильников.

#### ЛИТЕРАТУРА

- 1. ТКП 45-4.04-287-2013 «Наружное освещение городов, поселков и сельских населенных пунктов. Правила проектирования». Мн: Министерство архитектуры и строительства, 2013.– 19 с.
- 2. ТКП 45-2.04-153-2009 «Естественное и искусственное освещение. Строительные нормы проектирования». Мн: Министерство архитектуры и строительства, 2010. 100 с.

## Коротинский В.А., к.т.н., доцент

УО «Белорусский государственный аграрный технический университет», Минск, Республика Беларусь

### ОСОБЕННОСТИ РЕЖИМОВ СУШКИ ПИЛОМАТЕРИАЛОВ В КАМЕРНЫХ СУШИЛКАХ

**Ключевые слова:** камерные сушилки, конвективные сушилки, оптимальные режимные параметры, конструктивный расчет.

**Аннотация.** Камерные сушилки являются установками периодического действия, они малопроизводительны, но находят

широкое распространение из-за простоты конструкции, эксплуатации и более равномерного распределения влажного воздуха в объеме камеры, что эффективно сказывается при сушке пиломатериалов.

Характерной особенностью работы камерных сушильных установок является периодическая загрузка влажного и выгрузка высушенного материала, нагрев и охлаждение камеры, изменение параметров сушильного агента во времени.

Исследования, проведенные на камерной сушилке периодического действия, по определению оптимальных режимов сушки пиломатериалов позволили выявить основные особенности этого процесса:

- при высушивании пиломатериалов основная трудность заключается не в удалении влаги с поверхности, а в продвижении ее к поверхности по толщине материала. Это может быть достигнуто повышением коэффициента влагопроводности путем прогрева материала в среде с высоким влагосодержанием воздуха (при значительной температуре среды по мокрому термометру);
- древесина материал термолабильный, поэтому необходимо ограничивать температуру нагрева, особенно во влажном состоянии древесины, для чего применяют нарастающие температуры по мере просыхания материала;
- ценную древесину с высокой начальной влажностью полезно подвергнуть предварительно атмосферной подсушке на открытом воздухе;
- чем тоньше материал, тем быстрее и безопасней он просыхает, поэтому для сушки тонких пиломатериалов, особенно из мягких древесных пород, можно применить более высокие температуры;
- для сушки толстых пиломатериалов необходимо тщательное наблюдение за процессом сушки и за постепенным изменением параметров среды;
- на протяжении всего процесса сушки в пределах каждого режима температура по мокрому термометру может поддерживаться на постоянном уровне;
- при сушке пиломатериалов, когда к ним предъявляется требование сохранения натурального цвета и не допускается выплав-

ление смолы и выпадение сучков, используется низкотемпературный режим сушки, при этом температура сушильного агента не должна превышать: на первой стадии 55°C и на второй 70°C.

Сушильная камера периодического действия, предназначенная для сушки древесины отечественных пород (сосна, ель, ольха и береза) при производстве товарных пиломатериалов (например, доска пола), представлена на рис.1, характеристики которой сведены в табл.1.

Таблица 1 Характеристики сушильной камеры

| Наименование                                        | Ед.изм. | Значение    |
|-----------------------------------------------------|---------|-------------|
| Размеры сушильной камеры                            | M       | 3,0x3,0x7,0 |
| Размеры пакета (штабеля) древесины                  | M       | 1,6x2,5x6,0 |
| Доска обрезная сосновая, размером                   | MM      | 40x150x6000 |
| Режимы сушки «мягкий» и «нормальный» при температу- | °C      | 70          |
| ре до                                               |         |             |
| Начальная влажность пиломатериалов                  | %       | 60          |
| Конечная влажность материала                        | %       | 6           |
| Зазоры в ряду штабеля                               | M       | 0,015       |
| Зазоры по высоте штабеля                            | M       | 0,022       |

Результаты расчета [1] оптимальных параметров пакета древесины, удаленной влаги, продолжительности сушки и эффективности сушильной камеры приведены в табл.2.

Таблица 2 Оптимальные параметры сушильной камеры

| Наименование                       | Ед.изм.            | Значение       |
|------------------------------------|--------------------|----------------|
| Уточненные размеры пакета          | M                  | 1,635x2,52x6,0 |
| Общий объем пакета                 | $\mathbf{M}^3$     | 24,72          |
| Чистый объем древесины в пакете    | $\mathbf{M}^3$     | 14,76          |
| Коэффициент заполнения пакета      |                    | 0,597          |
| Плотность древесины до сушки,      | кг/ м <sup>3</sup> | 724            |
| Плотность древесины после сушки,   | кг/ м <sup>3</sup> | 480            |
| Масса пакета древесины до сушки    | КГ                 | 10690          |
| Масса пакета древесины после сушки | КГ                 | 7082           |
| Продолжительность сушки            | сут                | 4,2            |
| Годовая производительность сушилки | м <sup>3</sup>     | 1140           |
| Производительность вентилятора     | м <sup>3</sup> /ч  | 21000          |
| Мощность теплового оборудования    | кВт                | 400            |

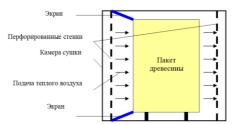



Рис. 1 Схема экранирования пакета древесины

#### ЛИТЕРАТУРА

- 1. Справочник по сушке древесины/ Под ред. Е.С. Богданова. М.: «Лесная промышленность», 1990.
- 2. Catalogue 1999/2000 WILO: Heating pumps and Systems/ Air Conditioning Mechanical Servies. E.& O.E. WILO GmbH, 2000.

Коротинский В.А., к.т.н., доцент, Гаркуша К.Э., к.т.н., доцент УО «Белорусский государственный аграрный технический университет», Минск, Республика Беларусь

# **НЕТРАДИЦИОННЫЕ СПОСОБЫ ПОЛУЧЕНИЯ** И ПОДГОТОВКИ КОРМОВ К СКАРМЛИВАНИЮ

**Ключевые слова:** корма, проращивание зерна, гидропоника, оптимальные параметры, энергоемкость процесса.

Аннотация. Технологии производства зеленой массы кормов на гидропонных установках для полноценного кормления животных и предупреждения гиповитаминозов в зимних условиях чрезвычайно актуальна в мире, когда существует масса сложностей при кормопроизводстве и получении экологически чистой продукции.

Использование гидропонных зеленых кормов продуктивности животных при их применении отмечалось еще в 60-х годах прошлого столетия. Потом о них «успешно» забыли, вплоть до 2000 г., когда в России вновь стали акцентировать внимание на нетрадиционные способы получения кормов. В современных условиях главное преимущество получения гидропонного зеленого корма путем проращивания зерна заключается в возможности его производства в необходимых объемах независимо течение всего года, климатических условий.