Литература

- 1. Техника сельскохозяйственная мобильная. Нормы воздействия движителей на почву: ГОСТ 26955-86-M. Издательство стандартов, 1986.-5 с.
- 2. Техника сельскохозяйственная мобильная. Методы определения воздействия движителей на почву: ГОСТ 26953-86. М. Издательство стандартов, 1986. 8 с.
- 3. Техника сельскохозяйственная мобильная. Метод определения максимального нормального напряжения в почве: ГОСТ 26953-86. М. Издательство стандартов, 1986. 8 с.
- 4. Гедроить Г.И. Опорные свойства шин для сельскохозяйственной техники / Г.И. Гедроить // Агропанорама, 2009. № 4. С. 23-27.
- 5. Гедроить Г.И. Допустимый уровень воздействия ходовых систем сельскохозяйственной техники на почву / Г.И. Гедроить, Ю.И. Томкунас, А.Д. Чечеткин // Агропанорама, 2013. № 5. С. 10-15.

УДК 629.3.027

ПАРАМЕТРЫ ШИН ДЛЯ ТРАКТОРОВ, АВТОМОБИЛЕЙ И СЕЛЬСКОХОЗЯЙСТВЕННЫХ МАШИН

Г.И. Гедроить, к.т.н., доцент, В. В. Михалков

УО «Белорусский государственный аграрный технический университет», г. Минск, Республика Беларусь

Введение

Оптимизация параметров ходовых систем автотракторной техники, сельскохозяйственных машин является важным этапом при разработке и внедрении новых моделей, модификаций. Создание опытных образцов пневматических шин является дорогостоящей и сложной операцией. Поэтому большую роль играет математическое моделирование процессов взаимодействия ходовых систем с опорным основанием [1, 2, 3]. Для выполнения расчетов необходимо объективно задавать параметры шин и соотношение их размеров.

Цель настоящей работы — установить соотношение наиболее важных параметров пневматических шин, применяемых на тракторах, автомобилях и сельскохозяйственной технике.

Основная часть

В нормативной документации, каталогах по шинам, как правило, приводятся значения диаметра шины D, ширины профиля B и часто статического радиуса $r_{\rm cr}$. Указывается также соответствующие нагрузка и давление воздуха в шине. При этом несложно определить радиус и деформацию шины λ :

$$\lambda = r_{\rm cr} - r_{\rm cr}$$

где $r_{\rm cb}$ — свободный радиус колеса.

Таблица 1 – Соотношение параметров тракторных шин и с.-х. машин

Обозначение		_		λ	λ	Н				
шины	λ	B	H	$\frac{\lambda}{B}$	$\frac{\lambda}{H}$	\overline{B}				
Радиальные шины										
11.2R20	47,5	284,5	243,5	0,167	0,195	0,86				
360/70R24	50	360	252	0,139	0,198	0,70				
420/70R24	59	420	294	0,140	0,201	0,70				
480/70 R24	63	480	336	0,131	0,188	0,70				
15.5R38	55	393,7	302,4	0,140	0,182	0,77				
16.9R38	67,5	429,3	354,9	0,157	0,190	0,83				
18.4R30	72,5	467,4	391,5	0,155	0,185	0,84				
18.4R34	72,5	467,4	390,7	0,155	0,186	0,84				
18.4R38	75	467,4	392,4	0,160	0,191	0,84				
18.4R42	70	467,4	391,6	0,150	0,179	0,84				
20.8R42	92,5	528,3	434,1	0,175	0,213	0,82				
30.5L32	80	774,7	465,5	0,103	0,172	0,60				
Диагональные шины										
6.50-16	18	165	176,8	0,109	0,102	1,07				
7.50-16	32,5	190,5	199,3	0,171	0,163	1,05				
9.00-20	35	228,6	211	0,153	0,166	0,92				
Шины сельскохозяйственных машин и прицепов										
9.00-16	34	255	245	0,133	0,139	0,96				
10.00-16	42	259	243,9	0,162	0,172	0,94				
10.00/75-15,3	30	264	195,7	0,114	0,153	0,74				
400/60-15,5	57	404	240,5	0,141	0,237	0,59				
16.00-20	47,5	405	283,5	0,117	0,167	0,70				
16,5/70-18	55	430	316,4	0,128	0,174	0,74				
500/50-17	56,5	500	256,6	0,113	0,220	0,51				
540/65R30	78,5	526	361,5	0,149	0,217	0,69				
22.0/70-20	88	560	396	0,157	0,222	0,71				
600/50-22,5	46	600	300,25	0,077	0,153	0,50				

Обозначение				<u>λ</u>	<u>λ</u>	<u>H</u>		
шины	λ	В	H	B	H	B		
185/75R16	24	190	138,8	0,126	0,194	0,73		
175/75R16	28	178	138,8	0,157	0,202	0,78		
225/75R17,5	34	228	168,8	0,149	0,201	0,74		
245/70R19,5	25	242	176,4	0,103	0,142	0,73		
8.25R20	28	230	227	0,122	0,123	0,99		
11.00R20	36	286	287	0,126	0,215	1,00		
1200R20	35	313	307	0,112	0,114	0,98		
315/80R22,5	39	312	252,3	0,125	0,155	0,81		
16.00R20	56,5	438	417,5	0,129	0,135	0,95		
500/70-508	44,5	475	338,5	0,094	0,131	0,71		

Таблица 2 – Соотношение параметров автомобильных шин и прицепов

Из маркировки шин мы можем, как правило узнать ширину профиля шины B, посадочный диаметр d., например, для шины 18,4R38 ширина профиля составляет 18,4 дюйм, посадочный диаметр — 38 дюйм. При более подробной маркировке известно отношение высоты H и ширины профиля B., например, для шины 420/70R24 значение ширины профиля составляет 420 мм, посадочного диаметра 24 дюйм, а отношение H к B — 70%.

При известных значениях D и d высота профиля шины определяется по формуле:

$$H = \frac{D-d}{2}$$
.

В таблицах 1, 2 приведены соотношения основных параметров шин, применяемых в настоящее время на траткорах, автомобилях и сельскохозяйственных машинах.

Для рассмотренных в таблице 1 тракторных шин значение отношения λ/B находится в пределах от 0,103 до 0,175, средне значение отношения λ/B составляет 0,147. Значение отношения λ/H находится в пределах от 0,172 до 0,217, средне значение отношения λ/H составляет 0,181. Значение отношения H/B находится в пределах от 0,60 до 0,86, средне значение отношения H/B составляет 0,82. Для шин, используемых на сельскохозяйственной технике рассмотренных в таблице 1 отношения λ/B находится в пределах от 0,077 до 0,162, средне значение отношения λ/B составляет 0,129. Значение отношения λ/H находится в пределах от 0,139 до 0,222, средне значение отношения λ/H составляет 0,185. Значение отно-

шения H/B находится в пределах от 0,50 до 0,96, средне значение отношения H/B составляет 0,71. Для автомобильных шин, рассмотренных в таблице 2 отношения NB находится в пределах от 0,094 до 0,157, средне значение отношения λB составляет 0,124. Значение отношения λ/H находится в пределах от 0,114 до 0,202, средне значение отношения λH составляет 0,161. Значение отношения H/B находится в пределах от 0,71 до 1,0, средне значение отношения Н/В составляет 0,84. Отметим, что приведены шины в основном являются шинами обычного профиля или широкопрофильными. С целью улучшения показателей взаимодействия ходовых систем с почвой возможно применение сверхнизкопрофильных, арочных шин, пневмокатков для которых соотношения указанных выше параметров отличаются [4]. При этом необходимо учитывать, что увеличение размеров колес приводит к изменению положения центра тяжести машин, размеров колесных ниш, возрастают нагрузки на трансмиссию и балки мостов, увеличиваются габариты по ширине (они ограничены для дорог), возрастает стоимость машин.

Заключение

Определены необходимые для аналитических исследований соотношения параметров шин, применяемых на тракторах, автомобилях и сельскохозяйственных машинах. При оптимизации ходовых систем необходимо учитывать их влияние на массогеометрические и компоновочные решения по машинам.

Литература

- 1. Гедроить Г.И. Опорные свойства шин для сельскохозяйственной техники / Г.И. Гедроить // Агропанорама. 2009, № 4. С. 23-27.
- 2. Агейкин Я.С. Проходимость автомобилей / Я.С. Агейкин М.: Машиностроение, 1981. 242c.
- 3. Гедроить Г.И. Взаимодействие с почвой многоколесных ходовых систем / Г.И. Гедроить, А.Г. Гедроить, А.Д. Чечеткин / Агропанорама, 2012. №5. c. 2 7.
- 4. Гедроить Г.И. Расчет нормируемых показателей воздействия колесных движителей на почву на стадии проектирования машин / Г.И. Гедроить // Современная сельскохозяйственная техника: исследование, проектирование, применение: материалы международной научно-практической конференции. Минск: БГАТУ, 2010. с.126–129.