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In this paper systolic processors are suggested for applying the Gauss block method to solve 
systems of linear algebraic equations appearing in numerical solution of nonstationary 
equations of mathematical physics. These processors are characterized by much weaker 
hardware requirements for the same computation time as compared to the existing structures 
implementing the Gauss method.

Description of complex physical processes with multicomponent interaction often reduces 
to nonstationary systems of second-order partial differential equations, e.g., parabolic or 
hyperbolic equations. As a rule, solution of these problems by analytical methods proves 
impossible. In this case the main instrument for finding solutions is numerical methods 
such as finite-difference and finite-element methods whose application requires the solution 
of a great number of systems of linear algebraic equations (SLAB), which sometimes are 
of high dimension. In this connection there arises a problem of fast solution of a set of 
SLAE. Its solution seems to lie in the application of special-purpose high-performance 
multiprosessor systems, in particular, systolic processors (SP).

We will synthesize an SP that implements the matrix factorization method (the Gauss 
block method) for solving SLAE of the form

(1)

/̂v-i

where A ,,..., A‘/v>

Co Bo 0 0 0 >̂0

c, B, 0 0

0 ... V C/v-i Bn- V .
0 ... 0 с. J n _

Bo,. •> ^V-l> Cq, ■ ■ . , Сд, are dense M /v>
Рдг are Af-dimensional column vectors. These SLAEs often appear in solving 

systems of partial differential equations. For example, consider a system of one­
dimensional linear parabolic equations in a region G = [0, /] X [0, 7]:
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dU
I t dx

T^dU
'^ -a r

r/(x,0) = C/., U{Q,t) = f/(Z,0=/x(0,

(2)

(3)

where U = U{x, t) = i f ')  and U, = u.{x) = {UJ,..., U f)  areJlf-dimensional
vectors and К  = {K^) =  {K^^lx, t)), a, ^  = 1, 2 ,..., M, is a positive definite M X M  
matrix {K > 0 for (x, t) G G). It is assumed that problem (2), (3) has a unique solution 
V{x, t), which is continuous in G and differentiable as many times as is required for 
approximation. _  _

Let us introduce th^ nets = {5, = ih, i = 0> I,---, ZV} and =  {tj = j r , j  = 0, 
l,...,y'o} and the net X oĵ  = {{ih, jr), i = 0, 1,..., N',j = 0, 1,...,Уо) in G
with steps h = UN and т = T!j. Denote by y{ the approximate value of the vector U at 
the node (x,, tj)\ let kj be the matrix of the values of the function at the same node; 
a( = 0.5(lfe',_|+it/). Consider the following purely implicit finite-difference scheme 
approximating equation (2):

y\* -y\ J_ . / + 1 . I' + l / + 1 4 j*\ / / + 1
(a/., (y/.i -Yi ) -a \ (Y

(4)

The scheme (4) provides approximation of the order of 0{h^+r) on the solution U = 
U{x, t) and is unconditionally stable and monotone, and the approximate solution 
converges to the exact one at a rate 0{h^-\-r). The boundary and initial conditions are 
approximated exactly:

1 -  '-'n , У ы  ~  '-'NYo

(5)y" = C7(x.,0) = f/.(x .).

For each j  = 0, 1 , . . . , ^ - !  the solution of problem (5), (6) reduces to solving the 
SLAE

1 < /< Z V -l,

Уо “ ^0 > Ум~^м'

which can be written in the form (1); for the boundary conditions of the first kind under 
consideration Bq nonzero M X M  matrices.

Remark. Besides finite-difference schemes (4), (5) with advance we can also apply 
general schemes with weight X [1]. For X 0 the solution algorithm for the resulting 
finite-difference schemes practically coincide with those above.

Matrix factorization method fo r  solving SLAE with blocked tridiagonal matrix. The
matrix factorization method (the Gauss block method) for solving systems of equations (1)



consists of direct and reverse runs. The direct run reduces to transforming equations (1) 
to an upper blocked two-diagonal system of equations:
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(6)

' l  Ug 0 ... o ' Yo Go

0 /  G, ... 0 G,

0 0 . . . / V . Gn- i

0 0 0 . . .  I
7 ^ . G , _

where I  is the unit M X M  matrix,

U, = Co'B „  =

The reverse run is the solution of the system of equations (6):

q = N - l , N - 2 , . . . , l , 0 .

(7)

(8)

Thus, the matrix factorization method for SLAE (1) can be implemented on SPs 
capable of performing matrix operations of the form

(C|J^) = (C |F )-A (U |G ) (9)

(for simultaneous performance of the operations and

{U\G) = C- ' (B\F) ( 10)

(for simultaneous performance of the operations and C^~'F^ or Co"'fio ^”<1 Q ” ‘Fo,
where the matrix = C^-A^U^_^ and the column vector F^ = F^-A,G^_, result from 
the operation (9)), and

D = G - U Y  (11)

(for performing the reverse run (8); C, C, A, U, and В in (9)-(ll) are M X M matrices 
and F, F, G, D, and Y are M-dimensional column vectors.

Systolic processors fo r  performing operations (9)-(ll). We will synthesize an SP for 
performing the operations (9)-(ll) using the well-known techniques in [2], [3], [4], [5], 
[6]. The result of the operation (U| G) = C~4B\F)  can be obtained as a solution of the 
SLAE C{U\G) = (5 |F) of M  equations with M  unknowns and ЛН-1 right-hand sides. 
This system of equations can be solved by the Gauss-Jordan method written in the 
following form:

z{i j ,0) 1 < i j  <M,
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z{i,j+M,0) =b ĵ, 1 < i j  <M,

г(1,2М + 1,0)=/;.,

1 <k  <M ;
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1. y{k',k,k) = l l z {k , k , k - l ) \

k + \ <i < K + M - l ;

2. y(i,k,k) = -z{i ,k,k-l )- ,

k + l <j  < 2M + 1;

3. x{kj , k)  =z { k j , k - l ) y { k , j - l , k ) ,  

y{kj , k)  =y{k, j - \ , k) \  

k + \ < i < K + M - \ ,  fc + 1 <;■ <2M  + 1;

4. z{i,j,k) =z{ i , j , k - \ )+x{ i - \ , j , k ) y{ i , j - \ , k ) ,  

x{i j , k)  =x{i - l , j , k) ,  

y{i j , k)  = уО ',;-1Д). 

k + l < ;2M + 1;

5. z{k+MJ,k) =x{k+M-lJ,k)- ,

u. =z{i+M,j+M,M),  I <i , j  ^ M , (12)

The graph of the algorithm (12) for M = 3 is shown in Figure 1, a, where the vertex 
types are marked by the corresponding numbers. To the five types of elementary 
operations in the algorithm (12) there correspond five types of graph vertices.

The graph vertices are located in the region V = {u{i, j , k )  G Z^\ 1 < к < M, к <
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Figure 1

i < k+M, k < j  < 2 M+ l \ j  k for i = k+M},  and the arcs are characterized by the 
vectors (I, 0, 0), (0, 1, 0), and (0, 0, 1).

The resulting graph can be mapped into the two-dimensional systolic processor SPls 
(Figure 1, b) using the allocation function

={j,k)

and the timing function
L̂S J ,  ̂ )) = Tls + (i -  1) + (/■ -  1) + (^ -  1),

(13)

(14)

where Tls is a constant determining the time instant when SP^s starts its operation.
The application of the allocation function (13) results in the mapping of type 1 and 2 

vertices and type 3-5 vertices of the graph into one (type A) and one (type B) processor 
elements (PE), respectively. Operating modes for these PEs are controlled by the signals 

and V2  that are fed to the graph vertices v(l, y, 1) G Y, 1 <  у <  2M-I-1, and v{i,j, 
1) G Y, 2 < г < M, 1 <  у <  2M+1,  and then transported in the direction of the vector 
(1, 0, 1), The correspondence between the types of PEs, types of graph vertices, and 
control signals is demonstrated in Figure 1, c.

To perform the operation (C|F) = {C\F)-A{U\G)  we employ the following 
algorithm:

p{i,0,k) = 1 <i ,k <M,
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z{0J,k)=Uj,  I < i j  <М,

z(0,M+\,k) = g , \ < k < M ,

=c.j,

g(z,M+l,M+l) =/j., 1 <z <M ; 

M > k > \ ,  1 < 7 < М  + 1;
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6. p(i,j ,k) =p{i , j - l ,k) ,  

z{i,j,k) =z{i - \ J , k) ,

q( i j , k)  =p( i , j , k+l )+pi i j - l , k)  ■ z ( i - l j , k ) ;  

Cij = q{ i JA) ,  

f i=q( i ,M+l , l ) , (15)

The vertices of the graph for algorithm (15) are located in the region V =  {v{i,j, 
k) G Z^\ 1 < i < M, I ^  j  ^  M +1, 1 <  ^ <  M} and the arcs are characterized by 
the vectors (1, 0, 0), (0, 1, 0), and (0, 0, —1). The resulting graph can be mapped into 
the SP by means of the allocation function

(16)

Under this mapping the elements of the matrix (f/| G) must be loaded into the local 
memory of the PE of the synthesized SP. To overlap the loading of the elements of the 
matrix (C/| G) with calculations we complete the region V with the vertices {v(z, j ,  k) G 
Z l̂ 1 ^  j  ^  M +1, 2 < к < M, 2 —к <  z < 0} and connect them with arcs in the 
direction of the vector (1 ,0 , —1) as is shown in Figure 2, a.

The space-time mapping of the extended graph by means of the allocation function (16) 
and timing function

/мм(^('>У'-^) ='̂ MM +{i+M-2)+( j - \ )~{k-M) , (17)

where t^ m is a constant, results in the systolic processor SP^m shown in Figure 2, b. The 
processor elements of SP^^  ̂ operate in two regimes (Figure 2, c).

Let us synthesize an SP for performing the operation D = G— UY. The calculation 
algorithm for D can be written in the following form:

g(z',0)=g,, l < i < M ,



y{0,k)=y^,  \ < k < M \

1 <k <M,  1 <i <M:
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8. y{i ,k)=y{i- \ ,k) ,

8(i,k) =g{i,k-l)-Uii^ ■y(i-l,k); 

di=g(i ,M),  l < i < M . (18)

Figure 2

If the graph for algorithm (18) is extended by adding type 9 vertices (for transporting ŷ ) 
as is shown in Figure 3, a and then is mapped on a linear SP by means of the allocation 
function/^,v(v(L k)) = к and timing function

/ mv(''(l ^)) =Тму+2(г+М -2)+(^-М ), (19)

this results in the systolic processor SP^m represented in Figure 3, b.

Systolic device fo r  performing the direct run. The direct run of the matrix factorization 
method with global interconnections can be performed on a systolic device for solving 
SLAE of the form (1), which consist of SP^s and SP^m (Figure 4, a). Indeed, according
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to algorithm (7), SPlj permits calculating (C/o|Go) = Q  '(fiol-fo) {U^\G^) =
\ < q < N, where Вд, is an arbitrary M X M  matrix, and can be

used for calculating {C^\F^) = (C,|F^)-/4^(t/^_i | 1 < ^ <  A.

Figure 3

We will show that the calculations on SPls and SP^^ can be carried out in parallel. 
Let tLs'^^v) denote a timing function of the form (14) in the calculation of the matrix 
{Ug\Gg) on the SPls {0 < q < N) and let be a timing function of the form (17)
in the calculation of the matrix (C^|F^) on the SP^^ (1 ^  The systolic
processors SPls ^nd SP^m are data-dependent by means of the matrices (U^\G^) and 
(C^|F^). According to the timing functions (14) and (17), the elements 1 <  i , j  < 
M, of the matrix issue from SPls ^t times j  +M,  Af))+1 = fLS '̂ '̂+'+У +
+ 3M -2  and arrive at SP^^, at times Гд,м̂ ’'^'*(у(г-М+1, 7, M)) = r^^^‘̂ '^'^+i+j-2 and 
the elements 1 < i < M, of  the vector Ĝ  issue from SPls times rLs'̂ *(''('
2M+1, M)) +1 = Tls*̂’ + i+4M - 1 and arrive at SP^^ at times —M + 1, M + 1,
M)) + l = Consequently, these elements can be transferred from SPls
to SPmm immediately if we choose

_ т'Ч'̂  +'ll M
^MM -  " ls  +  j  •

(20)

Because, according to the properties of the timing functions (14) and (17), the
M, of the matrix C issue from SP^^ at times ’•mm‘’'(v(L j,elements C j j 4 \  1 <  i, j  i y i ,  U 1  m e  п ш т л  is s u e  I i m i i  m M 

1)) +  1 = tmm‘’*+'+7+ 2M - 3  and arrive at SPls at times Tls'’'(v(«, j ,  1)) = TLŝ '̂ ’+t-l- 
+ j -2 ,  they can be transferred from SP îv, to SP,

J4)
'L S

le. oxls immediately if we choose
■ J4'> +2M-' 'MM 1 .

(21)

Formulas (20) and (21) determine an optimal choice of the parameters ^lŝ *̂, 0 < 
q < N, and 1 < ^ <  A, for the solution of one equation (1): tls*’* = {5M—l)q
and = (5M -1)(^-1)+3M .

When not one but many equations of the form (1) are solved, the chosen parameters



should be proportional to the SPlj and SP^^ calculation time, which is 
equal to M  (with each step q of algorithm (7) increased by one clock cycle using unit 
delays D): = 5Mq, 0 <  ^ <  V, and = 5M (^-1)+3M , 1 <  ^ <  V. The
choice of these and makes it possible to solve five problems simultaneously.
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Figure 4

The elements 1 < г <  M, of the vector are taken from SP ,̂ ,̂ at times 
M+\ ,  1)) + 1 = Тмм‘̂ ^+г+ЗМ- 2  and then fed to SPls at times rLs*̂ *(v(i, 

2M+1, 1)) = rLs‘̂ >+i+2M -l. Because Tij4)-\-i+2M -\-{T^^^‘’̂ + i+3M -2) = M+\ ,  
the e l e m e n t s h o u l d  be delayed by M+1 time cycles after it issues from SP^^j.

The synthesized systolic device contains (5/2)(Af^+A/) processor elements performing 
operations of division or multiplication with addition. The calculation time for the direct 
run for one problem is г з̂<' (̂у(2М, 2M+1, M )-fLs<V(l, L 1)) + 1 = 5M V+5M -1, and
for five problems it is rLs‘'^(v(2M ,2M+l,M)-rLs*°’(v(l, 1, 1)) +  1+ 4M=  5M V+9M -1.
Note that the existing SPs [7], [8], [9] implementing the direct run in the Gauss method 
for solving SLAEs with band matrices (including SLAEs of the form (1)) contains 
4M 40(M ) processor elements; in this case the performance time for Л direct runs is 
approximately equal to AMN as in the case of the synthesized SP.

A systolic processor for performing the direct run without global interconnections can 
be obtained by "superposition" of SPls and SP^m (Figure 4, b). Each PE of this SP 
includes processor elements SPls and SPmm that can operate independently. In this case 
the time characteristics and the number of arithmetic devices are the same as in the case 
of the systolic device represented in Figure 4, a but the global interconnections between
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them are eliminated.

Systolic device fo r  performing the reverse run. The reverse run (8) is implemented by 
SPmv for multiplying a matrix by a vector and one register (Figure 4, e). The vectors 
С д , _ Gq, - ( / д,, Е/д,_,,..., - G q are transferred to SP^y from the external memory. 
The calculated vectors 0 < q < N - 2 ,  are returned back to the SP^y for
calculating Ŷ .

We will prove the compatibility of the steps in the reverse run on the specialized 
systolic processor. Denote by tuiv̂ ’V ) th® timing function of the form (19) for calculating 
the vector У„. The elements 1 < i < M, of  the vector issue from the register

Tmv*^^'^+2j+ 2M—2 (see Figures 3, a and 4, e) andat times tf^J‘''^^\v{i, M ))+l + l
are transferred back to the SP^jy at times tf̂ ^̂ '‘’\v{ i—M + l, M)) = Тд,у*’^+2г—2. Conse­
quently, the calculated elements can be fed to the device immediately if we choose 

= 2 (A -1-^)M , 0 < q < N - \ .
The total computing time for realizing the reverse run on the specialized systolic 

processor is
C  ( v ( M ,  M ) ) ( v ( 2  - M , M ) )  +  2  =  2  A M  =  2 M  -  2 .

We note that the PEs of the constructed SP perform useful calculations at every other 
time cycle. Consequently, the number of PEs can be reduced two-fold or two problems 
can be solved simultaneously without increasing the required time. The well-known SP 
[7] implementing the solution of SLAE with band matrices has twice as many processor 
elements as the synthesized SP; the calculation time for the reverse run is the same for 
the two SPs.

On some problems solved using the synthesized SPs. The synthesized SPs can be 
applied for solving many-dimensional systems of equations of the form

p
—  = Y L  , 0 <t < T  
dt U

(22 )

in the P-dimensional parallelepiped G = {0 < < ly, у  = 1, 2 ,..., P}, where Ly —

dUd
dx

К
dx

; and К = КJx,  t) are square M X M  matrices, у -  I, 2,..., P, x =

x(X|,..., Xp). To this end we use the following technique for constructing locally one­
dimensional schemes [1]. We associate with equation (22) a chain P of systems having a 
simpler structure:

1 ЭУ
P dt

-Ly,  X GG,  tj^̂ y_̂ yp ,1 < 7  < p

with conditions V,(x, 0) = Gq(x), Vy{x, г,+,.^_|ур) = Vy_fx, tJ+̂ y_̂ |̂p), 1 <  7 <  P, 1 < 
j  < 7q, V|(x, tj) = Vp{x, tj). To solve these systems we can apply the above computational 
procedures. The value Vp = U+0(t) is taken as an approximate solution to problem (22) 
in each time layer.
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Solution of systems of hyperbolic second-order equations
d^u
dt^

_э_
dX

К
dt

(23)

(where К is an M X M  matrix) by the finite-difference method also reduces to equations 
of the form (1). In this case the differential operators in equation (23) are approximated 
according to the technique in [1].

The synthesized SPs can be used for solving quasilinear and nonlinear systems of 
equations with general boundary conditions. To this end it is necessary to construct the 
corresponding iterative process [1] whose every approximation is determined from a 
system of the form (1). In the case of boundary conditions of the second and third kind 
the blocks Bq and are nonzero.

The suggested SPs can be effectively used to solve modeling problems for transistor 
structures of integrated circuits. The elements of integrated circuits are formed as a result 
of redistribution of impurities in the process of thermal annealing of semiconductor 
materials. The diffusion of impurities is described by a system of equations of the type 
(2) or (22). Investigation of actual technological processes involves matrices of dimension 
from 2 to 4. Multivariant calculations can be carried out for these problems only using 
high-performance computers.

Thus, we have synthesized SPs for solving systems of linear algebraic equations with 
blocked tridiagonal matrix by the Gauss method. The necessity in solving a large number 
of such SLAEs often arises in the solution of problems of mathematical physics. The 
suggested SPs require much less (by almost a quarter) hardware for the same computing 
time as compared to the well-known systolic structures implementing the Gauss method.
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