Бекасова Т.А., студентка

Руководитель Бондарчук О.В.

ТЕХНОЛОГИЧЕСКИЕ ПАРАМЕТРЫ ЭЛЕКТРОАКТИВАЦИИ ПИВОВАРЕННОГО ЯЧМЕНЯ ПРИ ПРОИЗВОДСТВЕ СОЛОДА

Технологические особенности проращивания зерна характеризуются температурой, при которой происходит данный процесс на отдельных стадиях (18...21 °C), содержанием влаги в зерне (44...48 %), соотношением кислорода и диоксида углерода в слое зерна (в первые 2...3 дня должно быть больше единицы), а также продолжительностью проращивания (7...8 сут). Сушка солода обеспечивает снижение его влажности с 40...50 до 3...6 % и придание солоду специфического вкуса, цвета и аромата при сохранении высокой ферментативной активности.

С целью активации ферментативных процессов, увеличения энергии прорастания пивоваренного ячменя и улучшения качества солода, применяют химические биологические и физические способы. Технологические параметры электрофизического способа обработки зерна представлены в [1] и составляют: Напряженность электрического поля между: 1,2...1,3 МВ/м, время воздействия 2...3 с, количество воздействий на одну партию ячменя 2...3 раза.

Список использованных источников

Способ обработки пивоваренного ячменя в сухом виде : пат. 22032 Респ. Беларусь, МПК С12С 1/02 О.В. Бондарчук, В.А. Пашинский, Н.Ф.Бондарь; заявитель Учреждение образования «Белорусский аграрный технический университет». — № а 20160040; заявл. 10.02.2016; опубл. 30.10.2017 // Афіцыйны бюл. / Нац. цэнтр інтэлектуал. уласнасці. — 2017. — №5. — С. 21.

УДК 633.544.4

Ботько А.Ю., студент

Руководитель Михайлов В.В., ст. преподаватель

ОСОБЕННОСТИ УПРАВЛЕНИЯ БИОТЕХНИЧЕСКОЙ СИСТЕМОЙ ТЕПЛИЦЫ

Тенденции развития тепличного овощеводства обусловлены переходом на инновационные технологии интеллектуализации и

цифровизации управления биопродукционным процессом производства тепличных овощей. Появление и широкое распространение новых технологий в теплицах значительно улучшило экономику овощ-

вых технологии в теплицах значительно улучшило экономику овощной отрасли, увеличив урожайность, при существенном снижении затрат. Это привело к ускоренному росту отрасли до 11 % в год.

Проводимые исследования в производственных условиях светодиодной установки для облучения растений томата по доминантному каналу контроля и управления влажностью ризосферы показали высокую эффективность системы интеллектуального

управления тепличного производства овощей.

Принципы интеллектуального управления биотехнологической системой тепличного комбината основаны на включении ценоза растений, как адаптивного биообъекта труда в автоматизированную систему выращивания овощей, управляемой по ответной реакции растений в режиме реального времени в высокой мере обеспечивает повышение эффективности функционирования системы облучения при всесезонном производстве овощей.

УДК 635.21.077: 621.365

Бывших А.А., студент

Руководитель Дубодел И.Б., к.т.н., доцент

ИННОВАЦИОННАЯ ТЕХНОЛОГИЯ ОЧИСТКИ СТОЧНЫХ ВОД

Длительное время развитие способов защиты окружающей среды от загрязнений вредными отходами шло по пути строительства очистных сооружений. Однако в последнее время становится все более очевидным, что наиболее рациональным решением проблемы является внедрение малоотходных и безотходных технологий. Применяемые на сегодняшний день методы и технологии очистки стоков являются несовершенными, и в ряде случаев не обеспечивают необходимую степень очистки и утилизацию всех побочных продуктов, образующихся в этом процессе. Кроме того, применяемые решения не всегда являются экономически обоснованными и энергетически эффективными.

Во всех случаях очистки стоков первой стадией является механическая очистка, предназначенная для удаления взвесей и дисперсно-коллоидных частиц. Последующая очистка от загрязняющих веществ осуществляется различными методами: физикохимическими (флотация, абсорбция, ионный обмен, дистилляция,