офисной бумаге скорость растекания капли меньше, что в конечном итоге за этот промежуток времени дает возможность сформироваться основным зонам на хроматограмме, по анализу которых можно судить о загрязненности и моюще-диспергирующих свойствах масла. Так, четко очерченная зона ядра свидетельствует о небольшом пробеге двигателя и рабочем состоянии моторного масла. Наличие границы между зоной диффузии и зоной ядра указывает о работоспособности действующих присадок и удовлетворительных моюще-диспергирующих свойствах масла. Зона воды на хроматограмме представляет собой ровный невидимый контур, что свидетельствует об отсутствии воды в масле.

Список использованных источников

- 1. Standard Test Method for Measuring the Merit of Dispersancy of In-Service Engine Oils with Blotter Spot Method: ASTM D7899-19. ASTM International, West Conshohocken, PA, 2019. 7 p.
- 2. Серков, А.П. Совершенствование обслуживания автотранспортных средств за счет диагностики технического состояния эксплуатационных материалов: дисс. ... канд. техн. наук: 05.22.10 / А.П. Серков. Омск, 2018. 189 л.
- 3. Розбах, О.В. Экспресс-диагностика качества высокощелочных моторных масел способом «капельной пробы»: дисс. ... канд. техн. наук: 05.20.03 / O.B. Розбах. Омск, 2006. 137 л.
- 4. ПЛАМ-3 портативная лаборатория анализа масел и топлив / Лабораторное оборудование [Электронный ресурс]. 2021. Режим доступа: http://proflab.com.ua/produkt/product-details/2785-plam-3-portativnaya-laboratoriya-analiza-masel-i-topliv.html. Дата доступа: 05.07.2021.
- 5. Динамика растекания и проникновения капли моторного масла на фильтровальной бумаге / В.К. Корнеева [и др.]. // Агропанорама. 2021. № 6 (148). С. 26–30.

УДК 631.3-6

ВОЗМОЖНОСТИ КОНТРОЛЯ СОСТОЯНИЯ МОТОРНОГО МАСЛА МЕТОДОМ МЕМБРАННОЙ ФИЛЬТРАЦИИ

Студент — Спиридович П.М., змаг 21 тс, 1 курс, ФТС Научные руководители — Корнеева В.К., к.т.н., доцент; Закревский И.В., ст. преподаватель УО «Белорусский государственный аграрный технический университет», г. Минск, Республика Беларусь

Аннотация. Описан метод мембранной фильтрации (Patch Test) для контроля загрязненности моторного масла работающего ДВС. Рассмотрено используемое оборудование и приспособления для реализации метода.

Ключевые слова: моторное масло, ДВС, мембранная фильтрация (*Patch Test*), мембранный фильтр, фильтрограмма

В настоящее время мембранная фильтрация находит применение для проведения исследований в химии, микробиологии, биохимии, медицине, пищевой промышленности. В зарубежных странах (США, Великобритания, Китай, Индия, Новая Зеландия и др.) метод мембранной фильтрации, получивший название «патч-тестирование» (*Patch Test*), применяется также для анализа продуктов загрязнений топлив, смазочных материалов и других технических жидкостей. Однако, в странах СНГ для анализа загрязнений, присутствующих в работающем моторном масле, этот метод до настоящего времени не получил широкого развития и применения.

Метод *Patch Test* позволяет, во-первых, определить общую загрязненность моторного масла нерастворимыми механическими примесями по изменению массы фильтра [1], во-вторых, используя микроскоп, оценить соответствующий класс чистоты моторного масла, согласно классификации *ISO* 4406 [2], в-третьих, провести анализ размеров, формы и природы твердых частиц, что позволяет определить источник поступления загрязнений, а анализируя присутствующие металлические частицы оценить характер и причину износа деталей трибосопряжений. Метод *Patch Test* в конечном итоге позволяет своевременно определять неисправности, возникающие в работающем ДВС, и предотвращать выход двигателя из строя.

Метод мембранной фильтрации на примере работающего моторного масла заключается в следующем. Проба предварительно разбавленного растворителем исследуемого моторного масла I, залитая в воронку 3 с фильтродержателем, с помощью вакуумного насоса 5 через мембранный фильтр 4, закрепленный на основании фильтродержателя, пропускается в приемную колбу 6 (рисунок 1). Мембранный фильтр с осажденными на нем частицами загрязнений (фильтрограмма) сушится, взвешивается и подвергается микроскопическому исследованию.

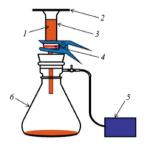


Рисунок 1 — Схема установки для изготовления фильтрограмм: I — проба масла; 2 — крышка; 3 — воронка с фильтродержателем и зажимом; 4 — мембранный фильтр; 5 — вакуумный насос; 6 — колба

В качестве разбавителя моторного масла обычно используется петролейный спирт (уайт-спирит) или разбавитель аналогичного типа в соотношении 1:1 [3, 4].

В качестве приемной колбы, соединяемой с воронкой силиконовой пробкой, используется колба Бунзена объемом 1 или 4 л.

Процесс фильтрации осуществляется за счет разницы между атмосферным давлением над фильтруемой разбавленной пробой масла и искусственно создаваемым разряжением (вакуумом) в сосуде приемнике. Вакуумный насос должен обеспечивать разряжение порядка 86,6 кПа (650 мм рт. ст.) [3]. В полевых условиях целесообразно использовать ручной вакуумный насос.

Согласно [1, 3] используют мембранные фильтры (рисунок 2), совместимые с пробой масла, а также с применяемыми разбавителями диаметром 47 мм, белого цвета, с нанесенной сеткой [каждый квадрат сетки стороной в $(3,08\pm0,05)$ мм и площадью, равной 1/100 площади рабочей зоны фильтрации] (рисунок 2, a), с номинальным размером пор 0,8 или 0,45 мкм. Изготавливаются мембранные фильтры из различных полимерных материалов: ацетата целлюлозы; нитрата целлюлозы; смешанного эфира (ацетат + нитрат) целлюлозы (рисунок 2, δ); полиэфирсульфона (рисунок 2, δ); нейлона; политетрафторэтилена и др.

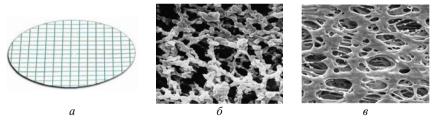


Рисунок 2 — Мембранный фильтр: a — внешний вид; δ — микроструктура фильтра из смешанного эфира целлюлозы; ϵ — микроструктура фильтра из полиэфирсульфона

Для сушки полученных фильтрограмм используют термостат статического типа с естественной циркуляцией, обеспечивающий поддержание температуры (90±5) °C [1] или сушильный шкаф, температуру в котором можно регулировать до (70±2) °C [3].

Для взвешивания высушенных фильтрограмм используют аналитические весы, обеспечивающие среднеквадратическое отклонение точности взвешивания не более 0.07 мг [1].

Для проведения микроскопического исследования применяют микроскопы, например, для лабораторного анализа оптические микроскопы с увеличением до ×2000, а для полевых условий – увеличением портативные микроскопы $\times 50-100$. Фотографии c

полученных фильтрограмм различных классов чистоты ISO представлены на рисунке 3 [5].

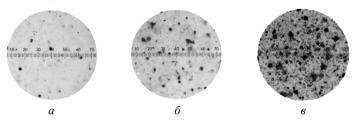


Рисунок 3 — Примеры фильтрограмм (увеличение $100 \times$, 1 деление на шкале — 14 мкм) различных классов чистоты ISO: a - 18/16/13; $\delta - 20/19/16$; $\epsilon - 26/24/21$

Список использованных источников

- 1 Standard Test Method for Particulate Contamination in Aviation Fuels by Laboratory Filtration: ASTM D5452-12. ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States, 2012. 11 p.
- 2 Чистота промышленная. Классы чистоты жидкостей: ГОСТ 17216-2001. Введ. 24.05.2001. Минск: Межгос. совет по стандарт., метрологии и сертиф., 2001. 12 с.
- 3 Чистота промышленная. Определение загрязненности жидкости методом счета частиц с помощью оптического микроскопа: ГОСТ ИСО 4407-2006. Введ. 24.06.2006. Москва: Стандартинформ, 2007. 19 с.
- 4 Fitch, J.C. The Lubrication Field Test and Inspection Guide / J.C. Fitch // Noria Corporation. 2000. 36 p.
- 5 Rocky Mountain Filtration Solutions: A Companion Booklet to be used with The Portable Fluid Analysis Kit. Colorado. 22 p.

УДК 631.3-6

ЭКСПРЕСС-МЕТОД ОПРЕДЕЛЕНИЯ ВОДОРОДНОГО ПОКАЗАТЕЛЯ РН ДЛЯ ОЦЕНКИ НЕЙТРАЛИЗУЮЩИХ, ПРОТИВОИЗНОСНЫХ И ПРОТИВОЗАДИРНЫХ СВОЙСТВ МОТОРНОГО МАСЛА

Студенты — Зыков Н.Д., 24 мо, 3 курс, ФТС Глаз Е.О., 42 тс, 3 курс, ФТС

Научные

руководители – Капцевич В.М., д.т.н., профессор;

Корнеева В.К., к.т.н., доцент

УО «Белорусский государственный аграрный технический университет», г. Минск, Республика Беларусь

Аннотация. Обоснован выбор определения показателя рН для оценки нейтрализующих, противоизносных и противозадирных свойств моторно-