Результаты исследований упрочненных с применением технологии диффузионного намораживания с последующей импульсной закалкой опытных образцов зубьев роторной бороны показали, что по техническому уровню упрочненные детали нового поколения являются конкурентоспособными изделиями в сравнении с лучшими зарубежными аналогами.

- 1. Ткачев В.Н. Работоспособность деталей машин в условиях абразивного изпащивания. М.: Машиностроение, 1995. 336с.
- 2. Бетеня Г.Ф., Анискович Г.И. Модификация структуры и механических свойств стали пониженной прокаливаемости при импульсном закалочном охлаждении жидкостью. / MOTOROL / Lublin-Pzeszow, 2013, vol.15, №7 С. 80–86.
- 3. Бетеня, Г.Ф. Опыт упрочнения деталей из сталей пониженной прокаливаемости импульсным закалочным охлаждением жидкостью / Г.Ф. Бетеня, Г.И. Анискович // Вестник БарГУ/ – 2013, вып. 1 – С. 152–159.
- 4. Повышение работоспособности деталей рабочих органов сельскохозяйственных машин / И.Н. Шило (и др.). Минск: БГАТУ, 2010. 320с.
- 5. Сталь. Эталоны микроструктуры: ГОСТ 8233-56. Введ. 07.01.1957. Послед. Изм. 18.05.2011. Минск: Межгос. Совет по стандартизации и сертификации. 2011.

УДК 631.173.4(07)

НАУЧНЫЕ ОСНОВЫ РАСПРЕДЕЛЕНИЯ РАБОТ МЕЖДУ УРОВНЯМИ РЕМОНТНО-ОБСЛУЖИВАЮЩЕЙ БАЗЫ

Студенты – Юрчик С.В., 29 тс, 4 курс, ФТС; Киршеня П.В., 29 тс, 4 курс, ФТС

Научные

руководители — Круглый П.Е., к.т.н., доцент; Драгун С.Н., ассистент

УО «Белорусский государственный аграрный технический университет», г. Минск, Республика Беларусь

Анализ видов ремонтно-обслуживающих работ, выполнение которых является объективной потребностью при эксплуатации машин, показал, что они отличаются сложностью и по трудоемкости.

Часть работ этих видов может успешно выполняться в центральных ремонтных мастерских хозяйств, другая часть требует более высокой специализации и концентрации [1, 2, 3].

На практике при распределении ремонтно-обслуживающих работ между уровнями базы может быть использован экспертно-аналитический метод [1]. Суть его состоит в определении коэффициента централизации работ путем учета частных коэффициентов, обусловленных влиянием на уровень централизации отдельных факторов, и экспертной оценки значимости каждого из этих факторов. Использование частных коэффициентов, представляющих собой безразмерные величины, позволяет дать количественную оценку влияния различных факторов, имеющих разные размерности.

Основными факторами, определяющими объем централизации ремонтно-обслуживающих работ, являются: расстояние от хозяйства до базы районного уровня, размеры хозяйства (площадь пашни) и производственные возможности базы хозяйства. Они оцениваются соответственно частными коэффициентами централизации K_1, K_2, K_3 . Предельный объем централизуемых работ равен

$$T_{np} = K_u T_{obu}, (1)$$

где K_u – коэффициент централизации;

 $T_{\it oбиц}$ — общий объем работ по TO и ремонту машинного парка хозяйства.

Коэффициент централизации определяется по зависимости

$$K_{u} = K_{1}b_{1} + K_{2}b_{2} + K_{3}b_{3}, (2)$$

где $K_1^{'}$. $K_2^{'}$. $K_3^{'}$ — частные коэффициенты централизации, учитывающие расстояние от хозяйства до базы районного уровня, размеры хозяйства (площадь пашни) и производственные возможности базы хозяйства соответственно;

 b_1, b_2, b_3 — значимость фактора, оцениваемого соответственно частными коэффициентами.

Для определения численного значения коэффициентов $K_1^{'}$ и $K_2^{'}$ установлена графическая зависимость их величины в функции соответственно расстояния и размеров хозяйства (рис. 1).

Частный коэффициент $K_3^{'}$, характеризующий производственные возможности хозяйства выполнять определенный объем работ по

обеспечению работоспособности и сохранности машинного парка, является комплексным. Его значение определяется по зависимости

$$K_3 = 1 - (a_1 b_1 + a_2 b_2 + a_3 b_3),$$
 (3)

где b_1' – показатель, характеризующий уровень укомплектованности хозяйства инженерно-технической и производственной службами (определяется как отношение фактического количественного состава квалифицированных специалистов этой категории работников к их нормативной потребности);

 $b_{2}^{'}$ – показатель обеспеченности хозяйства объектами РОБ (определяется как отношение имеющихся площадей этих объектов к нормативу);

 $b_3^{'}$ – показатель уровня организации работ по техническому обслуживанию и ремонту машин в хозяйстве;

 a_{1}, a_{2}, a_{3} — соответственно значимости приведенных показателей.

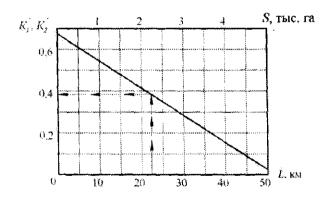


Рисунок 1 – Зависимость коэффициентов $K_1^{'}$ И $K_2^{'}$ от расстояния (L, км) до РОБ района и размера хозяйства (S, тыс.га)

Значимость факторов, определяемых коэффициентами K_1 , K_2 , а также составляющих коэффициента K_3 установлена на основании экспертной оценки. В качестве экспертов выступали работники, связанные с проблемой технической эксплуатации машинного парка

(научные сотрудники, специалисты инженерно-технической службы района и хозяйств).

Обработка данных экспертной оценки позволила получить следующие значения искомых величин.

Значимость факторов: $b_1 = 0.30; b_2 = 0.22; b_3 = 0.48$.

Значимость показателей коэффициента K_3 : $a_1 = 0.41$; $a_2 = 0.31$; $a_3 = 0.28$.

Расчеты, проведенные с использованием вышеизложенной методики распределения работ по уровням базы, позволили определить процентные отнощения объемов централизации в зависимости от основных определяющих факторов (таблица 1).

Таблица 1 – Значения коэффициентов централизации ремонтнообслуживающих работ

Расстояние	Площадь	Коэффициенты централизации по фактору				
до РОБ района, км	нашни хозяйства, га	расстояния (k_{y_1})	размера хозяйства (${\pmb k}_{y_2}$)			
5	2000	0,140	0,120			
10	2500	0,127	0,100			
15	3000	0,114	0,080			
20	3500	0,101	0,060			
25	4000	0,088	0,040			
30	4500	0,075	0,020			
35	8000	0,062	0,010			
40	10000	0,049	0,005			

При планировании работ по ремонту и техническому обслуживанию для распределения трудоемкости текущего ремонта и ТО тракторов в условиях Республики Беларусь можно использовать данные таблицы 2.

Распределение ремонтно-обслуживающих работ между базой хозийства и райагросервиса проиллюстрируем на следующем примере.

Сельскохозяйственный производственный кооператив (СПК) с площадью пашни 4,3 тыс. га находится на расстоянии 37 км от ремонтно-обслуживающей базы райагросервиса. Годовой объем работ, который необходимо выполнить для поддержания машиннотракторного парка в работоспособном состоянии составляет 318 усл. ремонтов.

Таблица 2 - Рекомендуемое распределение работ по текущему ремонту и техническому обслуживанию тракторов, %

Тракторы	Тяговый	Текущий ремонт		то-3		TO-2		TO-1	
	класс	ЦРМ	PAC*	ЦРМ	PAC*	ЦРМ	PAC*	ЦРМ	PAC*
Колесные	5,0	10	90	-	100	70	30	85	15
	3.0	10	90	-	100	70	30	85	15
	2,0	20	80	-	100	70	30	85	15
	1.4	40	60	50	50	90	10	100	-
	0,9	50	50	60	40	100	-	100	-
	_0,6	100	-	100	<u>-</u>	100	<u>. </u>	100	
*PAC – pař	іагросервис								

По графической зависимости (рисунок 1.1) находим значение коэффициента $K_1^{'} = 0,17$. Значимость фактора $b_1^{'} = 0,30$. Тогда частный коэффициент централизации по фактору расстояния равен $0,17 \times 0,30 = 0,05$.

По этой же зависимости (рисунок 1) находим значение коэффициента $K_{2}^{'}=0.09$. Значимость фактора $b_{2}^{'}=0.22$. Тогда частный коэффициент централизации по фактору размера хозяйства (площади пашни) равен $0.09 \times 0.22 = 0.02$.

Значение коэффициента K_3 определяем по зависимости (1.4). При расчете приняты: показатель, характеризующий уровень укомплектованности СПК инженерно-технической и производственной службами $b_3=0.80$ (значимость показателя $a_1=0.41$); показатель обеспеченности хозяйства ремонтно-обслуживающей базой $b_2=0.60$ (значимость показателя $a_2=0.31$); показатель уровня организации работ по техническому обслуживанию и ремонту машин в хозяйстве $b_3=0.80$ (значимость показателя $a_3=0.28$). Таким образом $K_3=0.26$. Значимость фактора $b_3=0.48$. Тогда частный коэффициент централизации по фактору возможностей хозяйства равен $0.26\times0.48=0.12$.

Таким образом, коэффициент централизации, учитывающий потребности хозяйства (формула 1.3) $K_{\mu}=0.05+0.02+0.12=0.19$. Если принять коэффициент, учитывающий производственные возможности базы района $K_{p}=0.82$, то коэффициент централизации ремонтнообслуживающих работ $K_{\mu}=0.19\times0.82=0.16$. Тогда объем централи-

зации работ (объем ремонтно-обслуживающих работ передаваемых на базу райагросервиса) составит $318 \times 0,16 = 51$ усл. ремонт.

Следующий этап расчетов заключается в распределении ремонтно-обслуживающих работ по объектам базы хозяйства (ЦРМ, автогараж с профилакторием, машинный двор, пункт технического обслуживания оборудования ферм, передвижные средства ТО и ремонта, ПТО подразделений хозяйств) [4,5].

В ЦРМ предусматривают проведение ремонтов тракторов, комбайнов, сложных сельскохозяйственных машин, техническое обслуживание тракторов, восстановление деталей и др.

Изложенная методика позволяет, исходя из реальных условий, определяемых частными коэффициентами централизации и их значимости, а также производственными возможностями базы района, рассчитать объемы централизируемых работ и тем самым обоснованно подойти к формированию заявок хозяйств на выполнение работ ремонтно-обслуживающими предприятиями и заключений с ними соответствующих договоров.

Приведены рассчитанные по выше указанной методике значения коэффициентов централизации ремонтно-обслуживающих работ в зависимости от расстояния до ремонтно-обслуживающей базы района, размера хозяйства и производственных возможностей РОБ хозяйства и райагросервиса.

Дано рекомендуемое распределение работ по текущему ремонту и техническому обслуживанию тракторов, машин и оборудования животноводческих ферм и комплексов.

Выполнен пример расчета распределения ремонтно-обслуживающих работ между базой хозяйства и райагросервиса.

- 1. Миклуш В.П., Бетеня Г.Ф., Круглый П.Е. Научные основы распределения ремонтно-обслуживающих работ между уровнями базы АПК. Минск : БГАТУ, 2004.-20 с.
- 2. Миклуш В.П., Сайганов А.С. Организация технического сервиса в агропромышленном комплексе: Минск : ИВЦ Минфина, 2014. 607 с.
- 3. Ивашко В.С., Круглый П.Е., Кашко В.М. и др., Обоснование годового объема ремонтно-обслуживающих работ для автомобильного парка хозяйств АПК. Изобретатель №1 (205), 2017. Ежемесячный научно-практический журнал ГКНТ НАН Беларуси. Минск, 2017, с. 31–36.
- 4. Миклуіп В.11., Тарасенко В.Е., Круглый П.Е. Организация технического сервиса. Минск : БГАТУ, $2016.-128~\mathrm{c}$.
- 5. Практикум по организации ремонтно-обслуживающего производства в АПК / В.П. Миклуш, П.Е. Круглый, А.К. Трубилов и др. Минск : БГАТУ, 2003. 276 с.