ОБ УСТОЙЧИВОСТИ ПОКАЗАТЕЛЕЙ ЛЯПУНОВА В ОДНОЙ ЗАДАЧЕ УПРАВЛЕНИЯ

H. С. Нипарко (Минск, Беларусь)

Следующая задача, возникшая в теории управления показателями Ляпунова линейных дифференциальных систем, поставлена проф. Е. Л. Тонковым. Пусть про систему линейных дифференциальных уравнений

$$(1)$$

$$x = A(t)x, \quad x \in \mathbb{R}^n, \quad t \geqslant 0, \text{ and } t \geqslant 0$$

с кусочно-непрерывными и равномерно ограниченными на временной полуоси $t \geqslant 0$ коэффициентами и n=2 известно только следующее: ее матрица Коши $X_A(\cdot,\cdot)$ такова, что при некотором T>0 и любом $k\in\mathbb{N}$ верно равенство $X_A(kT,(k-1)T)=$ $=\begin{pmatrix} a & c_k \\ 0 & b \end{pmatrix}$, где вещественные постоянные a и b одни и те же для всех $k\in\mathbb{N}$, а вещественнозначная последовательность $(c_k)_{k\in\mathbb{N}}$ ограничена, т. е. $\sup_{k\in\mathbb{N}}|c_k|=c<$ ∞ . Верно ли, что показатели Ляпунова такой системы (1) устойчивы при малых возмущениях ее матрицы коэффициентов? В докладе дается утвердительный ответ на этот вопрос, а сама постановка задачи несущественно обобщается.

Отметим вначале одно важное для дальнейшего упрощение: в постановке задачи можно, не нарушая общности рассуждений, считать, что a>0 и b>0. Для формулировки теоремы нам понадобится понятие интегральной вполне разделенности конечного семейства функций [1, c. 539]. Две вещественнозначные кусочно-непрерывные функции $p(\cdot)$ и $q(\cdot)$, определенные на $[0,\infty)$, называются интегрально разделенными [1, c. 537-538], если существуют такие положительные постоянные d и D, что $\int_s^t (p(\tau)-q(\tau))\mathrm{d}\,\tau > d(t-s)-D$ при всех $t\geqslant s\geqslant 0$, и интегрально близкими [1, c. 537-538], если для любого $\varepsilon>0$ существует такая зависящая, вообще говоря, от ε постоянная D_ε , что $\left|\int_s^t (p(\tau)-q(\tau))\mathrm{d}\,\tau\right| < \varepsilon|t-s|+D_\varepsilon$ при всех неотрицательных t и s. Две функции называются сравнимыми, если они либо интегрально разделены, либо интегрально близки, а семейство $\{a_1(\cdot),\ldots,a_n(\cdot)\}$ вещественнозначных функций, определенных на $[0,\infty)$, называется [1,c. 539] интегрально вполне разделенным, если любые две его функции сравнимы.

Напомним также, что показатели Ляпунова $\lambda_1(A)\leqslant\ldots\leqslant\lambda_n(A)$ системы (1) называются устойчивыми при малых возмущениях ее матрицы коэффициентов, если для любого $\varepsilon>0$ найдется такое $\delta=\delta(\varepsilon)>0$, что, какова бы ни была кусочнонепрерывная на $[0,\infty)$ $n\times n$ -матрица $Q(\cdot)$, удовлетворяющая при всех $t\geqslant 0$ оценке $\|Q(t)\|<\delta$, для показателей Ляпунова $\lambda_1(A+Q)\leqslant\ldots\leqslant\lambda_n(A+Q)$ возмущенной системы $\dot{x}=(A(t)+Q(t))x$ справедливы неравенства $|\lambda_i(A+Q)-\lambda_i(A)|<\varepsilon,\ i=1,\ldots,n.$

Ниже для матрицы $M=(m_{ij})_{i,j=1}^n$ символом diag M обозначается ее главная диагональ, т. е. упорядоченный набор (m_{11},\ldots,m_{nn}) .

Теорема. Пусть при некотором T>0 и каждом $k\in\mathbb{N}$ матрица Коши системы (1) $X_A(kT,(k-1)T)=X_k$, где X_k — верхнетреугольная матрица, диагональ которой $\operatorname{diag} X_k=(a_1^k,\ldots,a_n^k)$ состоит из положительных чисел. Если функции $b_i(\cdot):[0,+\infty)\to\mathbb{R},\ i=1,\ldots,n,$ я адаваемые равенствами $b_i(t)\equiv \ln a_i^k$ при $t\in [(k-1)T,kT),\ k\in\mathbb{N},$ таковы, что семейство $\{b_1(\cdot),\ldots,b_n(\cdot)\}$ интегрально вполне разделено, то показатели Ляпунова системы (1) устойчивы при малых возмущениях ее матрицы коэффициентов.

Доказательство теоремы опубликовано в статье [2].

Литература. 1. Былов Б.Ф., Виноград Р.Э., Гробман Д.М., Немыцкий В.В. Теория показателей Ляпунова и ее приложения к вопросам устойчивости. М.: Наука, 1966. 2. Нипарко Н.С. // Докл. НАН Беларуси. 2010. Т. 54, № 1. С. 39–43.

МАКСИМАЛЬНОЕ НИЖНЕЕ ХАРАКТЕРИСТИЧЕСКОЕ МНОЖЕСТВО ЛИНЕЙНОЙ СИСТЕМЫ ПФАФФА

А. С. Платонов (Могилев, Беларусь), А. В. Филипцов (Минск, Беларусь)

Рассмотрим линейную систему Пфаффа

$$\partial x/\partial t_i = A_i(t)x, \quad x \in \mathbb{R}^n, \quad t = (t_1, t_2, \dots, t_m) \in \mathbb{R}_+^m, \quad i = \overline{1, m},$$
 (1_n)

ाक्षण क्रिकेट का अहा अ

с ограниченными бесконечно дифференцируемыми на множестве \mathbb{R}_+^m пространства \mathbb{R}^m матрицами коэффициентов $A_i(t)$, удовлетворяющими в ней условию полной интегрируемости [1]. Пусть p[x] — нижний характеристический вектор [2] нетривиального решения $x:\mathbb{R}_+^m\to\mathbb{R}^n\backslash\{0\}$ системы (1_n) , определяемый условиями $l_x(p[x])\equiv \lim_{t\to\infty} (\ln\|x(t)\|-(p[x],t))/\|t\|=0$ и $l_x(p[x]+\varepsilon e_i)<0$ $\forall \varepsilon>0$, $i=\overline{1,m}$, где e_i — орт, а объединение нижних характеристических векторов такого решения $P_x=\cup p[x]$ — нижнее характеристическое множество [2] этого решения, объединение нижних характеристических множеств всех нетривиальных решений системы (1_n) $P(A)=\cup P_x$ — нижнее характеристическое множество [2] этой системы.

В [3] показано, что показатель Перрона матрицы фундаментальной системы решений X(t) линейной системы $\dot{x}=A(t)x$ совпадает с максимальным показателем Перрона этой системы. Доказана справедливость аналогичного утверждения для нижнего характеристического множества линейной системы Пфаффа (1_n) .

Множество $D \subset \mathbb{R}^m$ будем называть ограниченным сверху [4], если существует такое $r \in \mathbb{R}^m$, что $d \leqslant r$ для всех $d \in D$ ($d \leqslant r \Leftrightarrow d_i \leqslant r_i$, $i = \overline{1,m}$). Множество $\sup D \subset \mathbb{R}^m$, являющееся пересечением множеств $S \subset \overline{D}$, таких, что для всякого $d \in \overline{D}$ существует $s \in S$, $s \geqslant d$, будем называть точной верхней границей [4] ограниченного сверху множества $D \subset \mathbb{R}^m$.

Рассмотрим множество L_k решений линейной системы Пфаффа (1_n) , начинающихся при $t=t^{(0)}$ на произвольном подпространстве $\Pi_k=\mathbb{R}^k,\ k\in\{1,\ldots,n\}$, пространства \mathbb{R}^n .

Точную верхнюю границу всего множества нижних характеристических векторов решений системы (1_n) , принадлежащих множеству L_k , будем называть максимальным нижним характеристическим множеством этих решений и обозначать символом $P_k = \sup \bigcup_{x_0 \in \Pi_k} P_{x(\cdot,x_0)}$. Очевидно, что при k = n будем иметь $P_n = \sup P(A)$.

Пусть $X(t) = [x^{(1)}(t), x^{(2)}(t), \dots, x^{(k)}(t)] - n \times k$ матрица, составленная из линейно независимых столбцов-решений, служащих базисом в рассматриваемом множестве решений L_k .

Теорема. Максимальное нижнее характеристическое множество P_k решений линейной системы Пфаффа (1_n) , принадлежащих множеству L_k , совпадает с нижним характеристическим множеством P_X матрицы X(t).

В случае k=n непосредственно из теоремы вытекает

Следствие. Нижнее характеристическое множество матрицы фундаментальной системы решений X(t) линейной системы Пфаффа (1_n) совпадает с максимальным нижним характеристическим множеством $\sup P(A)$ этой системы.