УЛК 621.694.3

ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ РАБОТЫ ЭЖЕКТОРОВ

Инж. КРАВЦОВ А. М.

Белорусская государственная политехническая академия

В последние годы для очистки сточных вод от нефтепродуктов и взвешенных минеральных веществ рекомендуются малогабаритные комбинированные установки с реализацией гидромеханических процессов водоочистки.

Первые стадии очистки в рекомендуемых установках осуществляются в камерах струйной и напорной флотаций. В большой мере эффективность работы установок определяется точностью расчетов и подбора элементов систем подачи воздуха с помощью эжекторов. В данной работе поставлена задача сконструировать и испытать в лабораторных условиях эжекторы для подачи воздуха в камеры флотаций.

О физических процессах, происходящих в эжекторах, сведений немного [1]. Известно, что для работы эжектора необходимо создать в нем высокоскоростной поток воды. Вода (рабочая среда) в эжектор подается с помощью лопастного насоса, проходит через сужающее устройство и вследствие сжатия струи приобретает большую скорость при соприкосновении с воздухом в камере смещения и горловине. При взаимодействии поверхностей струи и воздуха происходит его увлечение в высокоскоростной поток и перемещение. Если при этом отношение диаметра сжатой струи к диаметру горловины достаточно мало (кольцевое сечение между стенками струи и горловины велико), то и воздействие высокоскоростного потока воды на воздушную среду мало. По мере движения в горловине струя воды расширяется, скорость движения ее частиц и площадь кольцевого пространства между струей и стенками горловины, занятая воздушной средой, уменьщаются, взаимодействие между струей воды и воздушной средой усиливается и на некотором расстоянии от входа в горловину становится таким, что возникают возвратные вихреобразные циркуляционные зоны вблизи стенки горловины, которые вовлекают в толщу струи воздух, перемешивая его с водой и перемещая вдоль потока. При этом в воздушной камере на входе в гордовину возникает вакуумметрическое давление, и под действием разности атмосферного и вакуумметрического давлений воздух через воздушный патрубок подается в эжектор. Образующаяся водовоздушная смесь через горловину поступает в камеру струйной флотации или в сатуратор. Возвратные течения и зоны перемешивания перемещаются в направлении входа в горловину при увеличении отношения диаметра сжатого сечения струи к диаметру горловины и давления на выходе из горловины.

Таким образом в число параметров, которые существенно влияют на процесс эжекции, входят: расход рабочей среды, давления на входе в эжектор и на выходе из горловины, проходные диаметры сечений сопла и горловины, расстояние от выходного сечения сопла до входного сечения в горловину, длина горловины, наличие и длина диффузорных участков на входе и выходе в эжектор, форма и вид сопла и др.

Конструктивно эжекторы, предназначенные для подачи воздуха в камеры струйной и напорной флотаций, могут быть похожими. Однако их размеры должны быть разными из-за того, что расход рециркуляционной воды в камеру напорной флотации должен составлять $15-50\,\%$ от расхода исходной сточной жидкости, подаваемой в камеру струйной флотации. Кроме того, при эксплуатации очистной установки в камеру струйной флотации необходимо подавать максимально возможное количество воздуха при достижении максимально возможных значений объемного коэффициента подсоса. При подаче же в камеру напорной флотации количество воздуха ограничивается его растворимостью в сатураторе и значение объемного коэффициента подсоса нецелесообразно поддерживать более 0,1-0,2.

В [2] исследованы различные виды и формы сопла эжекторов: конфузор со скругленным входом, конически сходящийся насадок, диафрагма с прямоугольными кромками (одноструйное сопло) и разным числом отверстий (многоструйное сопло). Сопло в виде диафрагмы с прямоугольными кромками с учетом результатов исследований принято за эталонное. Оно обеспечивает наиболее стабильную работу эжектора и максимальный подсос воздуха.

В данной работе исследована работа бездиффузорного эжектора с соплом в виде диафрагмы с прямоугольными кромками. Схема эжектора представлена на рис. 1, а схема экспериментальной установки —

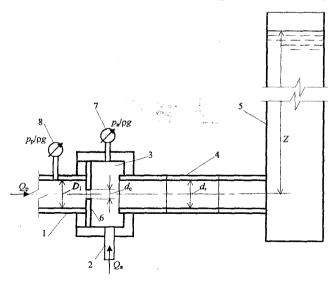


Рис. 1. Схема эжектора с переменной длиной горловины и соплом в виде диафрагмы с прямоугольными кромками: 1 — подводящая труба; 2 — воздушная трубка; 3 — воздушная камера (камера смешения); 4 — горловина; 5 — прозрачная стеклянная труба; 6 — диафрагма с прямоугольными кромками; 7 — вакуумметр; 8 — манометр

на рис. 2. Для визуализации процессов эжекции все элементы опытного образца эжектора были выполнены прозрачными из органического стекла. Горловина изготовлена из отдельных стыкующихся элементов, позволяющих изменять ее длину. В опытах измерялись следующие параметры: давление на выходе из насоса $p_{\rm H}$ /рg, избыточное давление на входе в эжектор $p_{\rm p}$ /рg, вакуумметрические давления в воздушной камере при закрытой и открытой воздушной трубке $p_{\rm BO}$ /рg и $p_{\rm B3}$ /рg, превышение уровня воды над центром выходного сечения эжектора Z, расход воды (рабочей среды) $Q_{\rm p}$, расход подсасываемого воздуха (пассивной среды) $Q_{\rm B}$, диаметры труб на выходе из насоса $D_{\rm H}$ и на входе в эжектор $D_{\rm l}$, диаметры отверстия диафрагмы (сопла) $d_{\rm c}$ и горловины $d_{\rm r}$, расстояние от выходного сечения сопла до входного сечения горловины $L_{\rm c}$, длина горловины $U_{\rm r}$, площади поперечного сечения отверстия диафрагмы $\omega_{\rm c}$ и горловины $\omega_{\rm r}$.

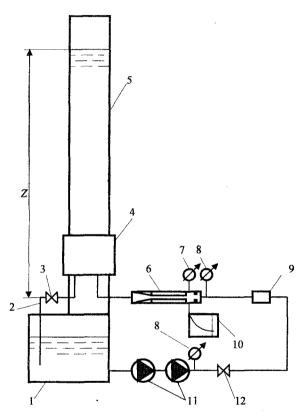


Рис. 2. Схема установки для испытания эжектора: 1- бак; 2- сбросная труба; 3, 12- задвижки; 4- стальной стакан; 5- прозрачная стеклянная труба; 6- эжектор; 7- вакуумметр; 8- манометры; 9- расходомер воды; 10- расходомер воздуха; 11- лопастные насосы

В опытах диаметр горловины был постоянным и равным $d_{\Gamma}=15,25$ мм. Изменение расстояния $L_{\rm c}$ от 13 до 80 мм существенно не влияло на режим работы эжектора. Длина горловины $L_{\rm r}$ принималась равной 311, 377, 443 и 510 мм, диаметр отверстия сопла $d_{\rm c}-4$, 6, 8, 10 и 12 мм, значения Z-0,5; 1,0; 1,5 и 2,0 м.

Значения расходов воды $Q_{\rm p}$ в зависимости от диаметров отверстий сопла $d_{\rm c}$ при открытой и закрытой воздушной трубке даны в табл. 1.

$d_{\rm c}$, mm	4	6	8	10	12	Примечания
	$L_{\rm c} = 13 {\rm MM}$					
<i>Q</i> _p , л/с	0,258	0,500	0,830	1,04	1,17	$L_{\scriptscriptstyle \Gamma}=510~{ m MM}$
	$D_{\rm I} = 15,7~{ m mm}$					
<i>Q</i> _p , л/с	0,245	0,550	0,890	1,12	1,23	$d_{\rm r} = 15,25~{\rm mm}$

Испытания эжектора осуществлялись следующим образом (рис. 2): вода из бака с помощью двух последовательно соединенных центробежных насосов марки K8/18 11 подавалась в стеклянную трубу диаметром 190 мм и длиной 2,25 м, помещенную в нижней части в стальной стакан. Для обеспечения постоянного уровня воды Z в трубе к днищу стакана присоединялась сливная труба с регулирующей задвижкой 3. Измерения давлений на входе в эжектор и в воздушной камере осуществлялись с помощью манометров 8 и 7. Расходы воды и воздуха проводились с помощью расходомеров 9 и 10.

Изменяющиеся значения коэффициентов подсоса $U = Q_{\rm B}/Q_{\rm p}$ в эжекторе с постоянной и переменной длинами горловин представлены в табл. 2.

Таблица 2

L	$d_{\rm c}$, mm		Примечания				
L_{r} , mm		0,5	1,0	1,5	2,0	Примечания	
	П	остоянная дл	ина горловин	ы L_{Γ}			
	4	1,85	1,65	1,55	1,44		
	6	1,57	1,41	1,27	1,21	$d_{\rm r} = 15,25~{ m mm}$	
510	8	1,05	1,01	0,990	0,954		
	10	0,802	0,766	0,726	0,664		
	12	0,559	0,540	0,494	0,454	$L_{\rm c} = 13 \text{ MM}$ $D_{\rm 1} = 15,7 \text{ MM}$	
	Переменная длина горловины $L_{\scriptscriptstyle m T}$						
311	8	0,990	0,905	0,812	0,761		
371		1,02	0,990	0,977	0,922	1	
443		1,04	1,02	1,00	0,990		
510		1,02	1,01	0,990	0,954		

По результатам измерений расходов $Q_{\rm p}$, давлений $p_{\rm H}/\rho g$, $p_{\rm p}/\rho g$ и $p_{\rm BO}/\rho g$ установлено, что:

$$p_{\rm H}/\rho g = 37 - 4.6 \ Q_{\rm p};$$
 (1)

$$p_{\rm p}/\rho g = p_{\rm H}/\rho g - 14.8 \ Q_{\rm p}^2;$$
 (2)

где $p_{\text{атм}}/\rho g$ — атмосферное давление; $Q_{\text{p}_{\text{r}}}$ Q_{B} — в л/с.

Изменяющиеся относительные значения вакуумметрического давления и вакуума в воздушной камере эжектора с постоянной длиной горловины при закрытой воздушной трубке представлены на рис. 3 и 4.

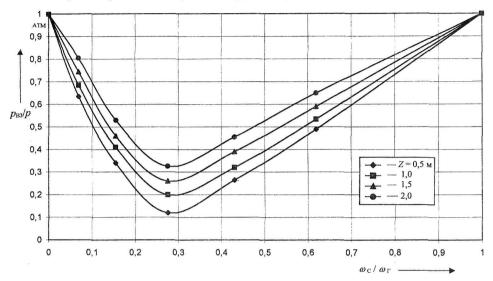


Рис. 3. Зависимость относительного вакуумметрического давления в камере смешения при закрытой воздушной трубке от отношения площадей сопла и горловины

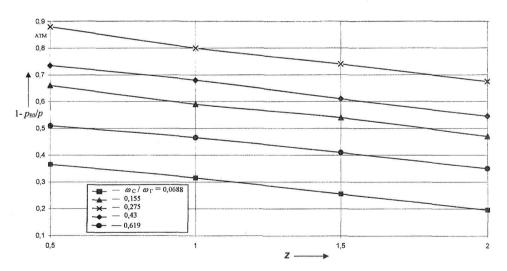


Рис. 4. Зависимость относительной величины вакуума в камере смешения при закрытой воздушной трубке от величины Z

выводы

На основании анализа результатов исследований следует, что:

1. Для обеспечения подачи воздуха во флотационные камеры водоочистных установок оптимальным является бездиффузорный эжектор с соплом в виде диафрагмы с прямоугольными кромками.

2. Наиболее эффективная работа эжектора происходит при отношении диаметра горловины $d_{\rm r}$ к диаметру отверстия сопла $d_{\rm c}$, равном двум, эффективная длина горловины $L_{\rm r}$ должна быть равна 30—35 диаметров горловины $d_{\rm r}$, расстояние между выходным сечением сопла и входным сечением горловины $L_{\rm c}$ — в пределах от двух до шести диаметров горловины $d_{\rm r}$, коэффициент скорости при истечении воды из отверстия сопла для приближенных расчетов можно принимать 0,76.

ЛИТЕРАТУРА

- 1. Л я м а е в Б. Ф. Гидроструйные насосы и установки. –Л.: Машиностроение, 1988. 276 с
- 2. Каннингэм Р. Г., Допкин Р. Ж. Длины участка разрушения струи и смешивающей горловины жидкоструйного насоса для перекачки газа: Теоретические основы инженерных расчетов. М.: Мир, 1974. № 3. С. 128—140.

Представлена Ученым советом МИПК

Поступила 29.07.1999