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1. INTRODUCTION

Deposition of thin films on various materials is of
scientific and practical interest since allows one to form
insulating or conducting layers and hard or elastic coat-
ings of the surfaces of articles [1–3]. For this purpose,
methods of deposition of coatings with the use of
assisted irradiation with accelerated ions are widely
used [4, 5]. Such irradiation can provide adhesion of the
coating to the substrate at the atomic level owing to
mixing of elements of the coating and the substrate
located near the phase interface of the structure “depos-
ited coating–substrate” in the cascades of atomic colli-
sions. It is known [6–11] that such factors as the ele-
mental and phase compositions of the coating, their
structure, adhesion to the substrate, topography, and
some others affect the characteristics of the modified
surface of the articles. Therefore, for the deposition of
coatings, diagnostics of the properties of the surface is
necessary.

In this work, we discuss the results of investigation
of the elemental composition, topography, and wetta-
bility of the surface of graphite modified by ion-assisted
deposition of Cr coatings under conditions of irradiation
with chromium ions (self-irradiation and self-ion-
assisted deposition of coatings, SIAD method).

2. EXPERIMENTAL

The Cr coatings were deposited on graphite wafers
with ion assistance under self-ion-assisted conditions.
To do this, we applied the method with the use of a res-
onant ion source of the vacuum arc plasma according to
the procedure reported in [12]. The experimental layout
is shown in Fig. 1. Resonant ion source (

 

1

 

) generates

the vacuum arc discharge plasma. Its electrodes are
made from the material of the deposited coating, which
allows one to obtain the fluxes of neutral atoms (

 

2

 

) and
metal ions (

 

3

 

). Under burning of the arc, the neutral
fraction of the deposited material evaporates in various
directions, including deposition on article (

 

4

 

). Under
the effect of electric field (

 

5

 

), which is generated
between electrodes (

 

1

 

) (ground potential) and high-
voltage electrode with article holder (

 

6

 

) supplied with a
negative potential, generated ions (

 

3

 

) are drawn out
from the discharge gap and move to the article, being
incorporated into its surface simultaneously with the
deposition of coating (

 

7

 

). Under the effect of ion irradi-
ation, atoms of the article and deposited coating are
mixed in the cascades of atomic collisions. As a result,
the modified surface of article (

 

4

 

) with thin film (

 

7

 

) is
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Fig. 1.

 

 Schematic diagram of self-ion-assisted deposition of
coatings. Explanations see in the text.
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formed. The process of deposition of the coating is con-
trolled by varying the operational mode of the ion
source. The ion flux is varied using microammeter
(

 

8

 

) via integration of the ion current.
The flux density of assisting ions varied in the range

 

I

 

 = 10

 

14

 

–10

 

15

 

 cm

 

–2

 

 s

 

–1

 

. Its ratio to the flux density of
neutral atoms (

 

A

 

) was established experimentally, and
in various experiments, it was 

 

I

 

/

 

A

 

 = 0.2–0.4. The depo-
sition rate of coatings varied in a range of 1–5 nm/min,
and the thickness of deposited layers varied in a range
of 200–1100 nm. The potential supplied to the article
holder for acceleration of assisting ions was 10 kV. The
residual pressure during the deposition of coatings was
~10

 

–2

 

 Pa and the process duration was 1–12 h.
For elemental analysis of formed coatings, the Ruth-

erford backscattering (RBS) method was used. The
layer-by-layer concentration of elements was investi-
gated via modeling the composition of the surface
using the RUMP program [13], which allows one to
reconstruct the experimental RBS spectrum by the ele-
mental composition at preliminarily specified parame-
ters of the installation and experimental conditions.

The data on hydrophilicity of the sample surface
were obtained by measuring the equilibrium contact
angle using the setup shown in Fig. 2.

A drop of bidistilled water (

 

4

 

) having a volume of
~0.05 ml was placed on the surface of sample (

 

1

 

)
mounted on movable table of tilt-and-swivel stand (

 

2

 

)
using medical syringe (

 

3

 

). The sample was positioned
and the drop was extruded using stepper motors
equipped with control unit (

 

5

 

). The sample–drop sys-
tem was stabilized for 120 s. Then, using digital camera
(

 

6

 

) having the possibility of remote shutter release, the
image of the drop illuminated by monochromatic opti-
cal source (

 

7

 

) was recorded.
The contact angle was measured by the slope of the

tangent to the drop’s surface from its left and right sides
using computer modeling of the location of the tangent
to the three-phase line by the drop’s image. This proce-
dure was repeated ten times for five different parts of
the sample surface. The air temperature during the
experiment was 24

 

°

 

C. As the wetting liquid, we used
bidistilled water. The error in determining the contact
angle was less than 1%.

Since the surface topography can affect wetting, we
investigated it by atomic force microscopy in the con-
tact mode using an NT 206 multifunctional scanning
atomic force microscope with Surface Explorer soft-
ware for obtainment of two-dimensional and three-
dimensional images of the surface and determination of
its roughness.

3. RESULTS AND DISCUSSION

 

3.1. Surface Topography of the Modified Graphite

 

Surface topography of the starting graphite samples
and the one modified by the deposition of chromium-
based coatings is shown in Figs. 3 and 4, and its char-
acteristics are presented in Table 1. It is established that
the average roughness of the areas of the starting graph-
ite 25 

 

µ

 

m

 

2

 

 in size is 24.27 nm. After deposition of the
Cr coating for 1 h, it decreases by ~28%. Then, with
time, the average roughness increases, and after 3 h, it
becomes comparable with that of the starting sample,
and after 12 h, it reaches a value of 34.36 nm (~141.5%
with respect to the starting one).

The observed surface profiles of the graphite with-
out coating and the modified one differ from each other.
The surface of the starting sample comprises the
ensemble of hills having close heights (see Fig. 3a)
with surface roughness of ~24 nm. After deposition of
the Cr coating for 1 h, inhomogeneities with a very high
local roughness appear in the section profiles in valleys
between the hills (see Fig. 3b). Since the total differ-
ence in heights over the area and, consequently, the
roughness decreases, this leads to its general increase.
This can indicate that the film material at the beginning
of the deposition process as if slides into the depres-
sions between the natural surface irregularities of the
graphite substrate. As the deposition time and, conse-
quently, coating thickness increase, these new forma-
tions grow and gradually occupy existing depressions,
and upon attainment of a certain thickness, they exceed
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Fig. 2.

 

 Setup for the contact angle measurements. Explana-
tions see in the text.

 

Table 1.  

 

Characteristics of the surface topography of the
starting and modified graphite samples

Coating Deposition 
time, h

Average 
roughness, nm

Ratio total/pro-
jective area

Absent – 24.27 1.06

Chromium 1 17.38 1.05

3 23.71 1.04

6 28.43 1.05

12 34.36 1.07
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the height of the natural hills on the starting graphite
surface. In this case, the roughness increases (see
Fig. 4c) and becomes larger than that in the starting
sample by a factor of 1.4.

 

3.2. Elemental Composition

 

Figure 5 represents the experimental RBS spectrum
of helium ions from the graphite sample with the depos-
ited Cr coating (solid line) and the one reconstructed
using the RUMP modeling program (dashed line). It
follows from the presented data that, in addition to
chromium atoms, silicon, oxygen, and carbon are
present in the coating. Moreover, when simulating the
experimental RBS spectrum, we revealed that the coat-
ing composition also involves hydrogen atoms. The last

fact was confirmed in independent experiments with
the use of the resonant nuclear reaction 

 

1

 

H(

 

15

 

N, 

 

αγ

 

)

 

12

 

C,
which occurs during the interaction of hydrogen with
N

 

+

 

 ions (energy of 6.4 MeV, resonant width of
1.86 keV) [14, 15]. We believe that the presence of
hydrogen, oxygen, and carbon in these coatings is asso-
ciated with their ingress into the atomic flux of the
material of the coating during its growth from the atmo-
sphere of the vacuum chamber pumped by an oil-diffu-
sion pump. The appearance of silicon in the concentra-
tion of several atomic percent in coatings is apparently
caused by the effect of removal of impurity Si atoms
from the near-surface region of the graphite substrate
owing to the interdiffusion in much the same way as the
diffusion of Ca and S atoms from rubber into metal
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Fig. 3.

 

 Surface topography and section profile of (a) starting graphite sample and (b) graphite sample modified by self-assisted dep-
osition of Cr coating for 1 h.
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Fig. 4.

 

 Surface topography of graphite modified via deposition of Cr coatings for (a) 3, (b) 6, and (c) 12 h.
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coatings deposited on the elastomer by the SIAD
method [11].

Figure 6 represents the distributions of elements in
the coating and substrate obtained by the reconstruction
of the experimental RBS spectrum (see Fig. 5). The Cr
content decreases from 10 at % on the coating surface
to ~0.6 at % in the region of the coating–substrate phase
interface denoted as the location of the starting surface
of the substrate. In this case, chromium atoms with a
concentration of ~0.5 at % are revealed in the graphite
substrate at a depth >350 nm, which indicates its radia-
tion-stimulated diffusion into the substrate during the
deposition of the coating since the projective path
length and struggling of the path length of the Cr

 

+

 

 ions
with 

 

E

 

 = 10 keV in graphite are ~11 and ~2.6 nm,
respectively [16].

The distribution profiles of the O and Cr atoms over
the depth are similar, but the oxygen content in the coat-
ing is higher by a factor of 6–9. In graphite, starting
from a depth of ~100 nm or larger, the O concentration
is lower compared with that of Cr by a factor of ~3. As
for hydrogen and carbon, their amounts in the coating
are comparable and reach 40–50 at % at different

depths. However, in contrast to the systems coating–
steel, coating–aluminum, and coating–silicon, in which
hydrogen is localized only in the metal coatings [14],
with the use of a graphite substrate, penetration of
hydrogen with a concentration up to 8–9 at % to a
graphite depth up to ~350 nm is observed.

 

3.3. Contact Angle

 

It follows from the data of Table 2 that modification
of graphite by deposition of chromium-based coatings
leads to hydrophobization of its surface. We can assume
that, as the coating thickness (

 

h) increases, irregulari-
ties on the graphite surface are filled with the deposited
material, and at h � 400 nm, the additive contribution
of the material diffusing from the substrate on the sur-
face becomes small, i.e., the elemental composition of
the coating surface stabilizes. Consequently, the varia-
tion in the contact angle with increasing h is due to the
variation in the surface roughness (see Table 1), which
is quite satisfactorily described by the Deryagin–Vent-
sel’ formula [17].

4. CONCLUSIONS

Using the Rutherford backscattering method, the
elemental composition of chromium-based coatings
deposited on graphite is determined. It is revealed that,
in addition to chromium atoms, they contain hydrogen,
carbon, and oxygen from residual gases of the deposi-
tion chamber as well as a silicon impurity. The layer-
by-layer analysis of the surface of the coating–graphite
structures showed that the SIAD process is accompa-
nied by interdiffusion of the components of the depos-
ited coating into the graphite bulk and Si atoms from
the graphite bulk on the surface of the formed coating–
substrate structure.

The investigations of topography and water wetta-
bility of the graphite surface modified by the deposition
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Fig. 5. RBS energy spectra of He+ ions with energy of
1.4 MeV of graphite sample with chromium deposited on
its surface with assisting energy of 10 keV. The solid curve
is the experimental spectrum, and the dashed curve is the
spectrum simulated with the use of the RUMP program.

Fig. 6. Variation in concentrations of elements over depth in
the chromium–graphite system obtained by simulation
based on the experimental RBS data.

Table 2.  Equilibrium contact angle of the surface of starting
graphite and graphite with chromium coating

h, nm Equilibrium
contact angle, deg

Relative variation 
of the equilibrium 
contact angle, %

0 59.3 –

320 58.9 –0.7

540 59.8 0.8

700 67.8 14.3

1050 62.9 6.1
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of Cr coatings of various thicknesses using the SIAD
method showed that the hydrophobicity of the chro-
mium coating is affected by its elemental composition
and roughness, which increases as its thickness
increases. The analysis of the results obtained allows us
to conclude that it is possible to form the surface of
graphite articles with a specified water contact angle by
controlling the composition and roughness of the sur-
face.
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