Отличительной особенностью систем микроклимата, предлагаемых зарубежными фирмами, является то, что в основном применяются вытяжные вентиляционные системы, с помощью которых в помещении создается пониженное давление и свежий наружный воздух поступает извне через различные конструкции: каналы, клапаны, приточные шахты или перфорированный потолок. Получают распространение и системы равного давления, однако их недостатком является высокая стоимость.

Список использованных источников

- 1. *Болтянская Н.И*. Пути развития отрасли свиноводства и повышение конкурентоспособности ее продукции / *Н.И*. *Болтянская* // Motrol: Motoryzacja i Energetyka Rolnictwa, 2012. –Vol.14. No3, b. P.164-175.
- 2. *Болтянська Н.І.* Система чинників ефективного застосування ресурсозберігаючих технологій в молочному скотарстві на підприємстві / Н.І. Болтянська // Науковий вісник ТДАТУ: Електронне наукове фахове видання. Мелітополь: ТДАТУ, 2016. Вип.6. Т.1. С. 55-64.
- 3. *Болтянська Н.І.* Умови забезпечення ефективного застосування ресурсозберігаючих технологій в молочному скотарстві. Праці ТДАТУ.— Мелітополь: ТДАТУ, 2016. Вип. 16. Т.2. С. 153-159.
- 4. Скляр $O.\Gamma$. Основи проектування тваринницьких підприємств: підручник / $O.\Gamma$. Скляр, H.I. Болтянська. К.: Видавничий дім «Кондор», 2018. 380 с.
- 5. *Болтянская Н.И.* Анализ основных направлений ресурсосбережения в животноводстве / *Н.И. Болтянская, О.В. Болтянский* // Motrol: Motoryzacja i Energetyka Rolnictwa. 2016. Vol.18. No13, b.-P.49-54.
- 6. *Болтянська Н.І.* Показники оцінки ефективності застосування ресурсозберігаючих технологій в тваринництві / Н.І. Болтянська //Вісник Сумського НАУ СЕРІЯ «Механізація та автоматизація виробничих процесів». Суми, 2016. Вип. 10/3 (31). С. 118–121.

Герасимович Л.С., д.т.н., академик, Тайнова А.А., аспирант Республиканское научно-производственное унитарное предприятие «Институт энергетики Национальной академии наук Беларуси», г. Минск

СИСТЕМА КОМПЛЕКСНОГО ЭНЕРГООБЕСПЕЧЕНИЯ АГРОПРОМЫШЛЕННЫХ ПРЕДПРИЯТИЙ С ЗАМКНУТЫМ ПИКЛОМ

В настоящее время в Республике Беларусь кроме специализированных предприятий по переработке продукции животноводства (38 предприятий по переработке молока и 20 мясокомбинатов) переработкой сельскохозяй-

ственного сырья занимаются цеха «Белкоопсоюза», подсобные производства сельскохозяйственных организаций, а также организации частной формы собственности. Мясокомбинаты перерабатывают около 70 % реализуемого скота в Республике, на молокоперерабатывающие заводы направляется около 90 % произведенного молока.

Значительный интерес представляют цеха по переработке сельскохозяйственной продукции на местах ее производства.

В большинстве таких хозяйств никогда не проводились энергетические обследования, в силу того, что они имеют годовое потребление ТЭР до 1500 т у.т., поэтому не сформировано грамотной политики энергосбережения, направленной на более эффективное и рациональное использование ТЭР. Работы по энергосбережению ведутся своими силами, но имеется значительный потенциал. На долю таких хозяйств приходится до 30% переработки мяса и около 10% молока в целом по стране.

Этот сегмент сельхозпредприятий будет рассмотрен на примере 60 передовых базовых сельскохозяйственных предприятий. На 33 предприятиях имеются цеха собственной переработки продукции животноводства мясного (свиньи, КРС, овцы птица) и молочного направления.

Молоко частично перерабатывается только на 4 предприятиях, все 33 цеха имеют переработку мясной направленности. Подсобные цеха по переработке имеют различную глубину переработки сырья, как полный технологический цикл, так и частичная переработка.

Перерабатывающие цеха по объему перерабатываемой продукции можно кластеризовать следующим образом: крупные цеха — от 1 до 5 тыс.т/год (7 предприятий); средние цеха — от 0,4 до 1 тыс.т/год (7 предприятий); малые цеха — менее 0,4 тыс.т/год (18 предприятий). Эталонное предприятие СПК «Агрокомбинат Снов» — более 20 тыс.т/ год. Виды топливно-энергетических ресурсов, используемые в перерабатывающих цехах: топливо (природный газ, котельно-печное топливо, а также местные энергоресурсы, такие как дрова, торф, отходы деревообработки, сельско-хозяйственной деятельности и пр.), электрическая и тепловая энергия. Применяемые технологии, технологическое и энергетическое обору-

Применяемые технологии, технологическое и энергетическое оборудование, состояние техники в подсобных цехах по переработке сельскохозяйственного сырья, отличаются незначительно на разных предприятиях, как правило, это оборудование, оставшееся с советских времен, частично посильно модернизировано, заменено на новое.

Системы комплексного энергообеспечения могут быть представлены различным сочетанием инновационных генерирующих, сетевых объектов и потребительских технологических установок и оборудования. Такие энергосистемы могут быть изолированными энергетическими «островами» либо иметь электрические связи с единой энергетической системой и взаимодействовать с нею с помощью технологий «микрогрид».

На рисунке 1 приведена система комплексного энергообеспечения перерабатывающих цехов.

Выводы. Создание собственных энергоцентров, позволит заменить и/или модернизировать морально и физически устаревшее неэффективное оборудование; повысить эффективность процессов теплопотребления, максимально используя собственную комбинированную выработку электроэнергии на теплотехнологическом потреблении (увеличить коэффициент использования топлива); утилизировать отходы производства (органические отходы животноводства, растениеводства и переработки с/х сырья); использование ВИЭ, и как следствие, увеличить долю использования МВТ; улучшить экологическую обстановку, снизив выбросы СО2 и улучшив экологию производства; снизить затраты ТЭР на производство продукции и уменьшить себестоимость продукции; создать дополнительные рабочие места на производстве; повысить энергобезопасность агропромышленного предприятия с замкнутым циклом производства.

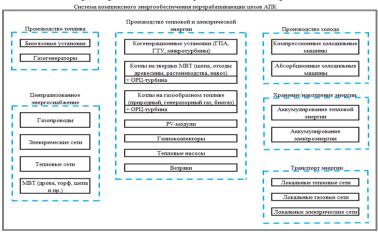


Рисунок 1 — Система комплексного энергообеспечения перерабатывающих цехов АПК

Список использованных источников

- 1. Маркова В.М., Чурашев В.Н. Возможности повышения эффективности и оптимизации структуры энергетики: роли «большой» и «малой» генерации // Мир экономики и управления. 2017. Т. 17, № 3. С. 62–84.
- 2. Ковалев, М.М. Рейтинг экономической развития 60 базовых сельхозпредприятий Республики Беларусь / М.М. Ковалев, Е.С. Тарасенко // Вест. Ассоциации белорус, банков. 2009. - \mathbb{N} 6. С. 10-19.
- 3. Когенерация выход для переработчиков / Л.А. Маринич [и др.] // Техника и наука. -2013. -№ 11. -ℂ. 100-103.

4. Энергоэффективность аграрного производства / В.Г. Гусаков [и др.]; Нац. акад. наук Беларуси, Ин-т экономики, Ин-т энергетики; под общ. ред. В.Г. Гусакова, Л.Л. Герасимовича. – Минск: Беларус. навука, 2011. – 776 с.

Говор Г.А., д.ф.н., профессор, *Научно-практический центр* по материаловедению *НАНРБ*

Добрянский В.М. д.т.н., профессор, УО «Белорусский государственный аграрный технический университет», Минск, Республика Беларусь Ларин А.О., аспирант

Научно-практический центр по материаловедению НАНРБ, ТЕРМОМАГНИТНЫЙ ДВИГАТЕЛЬ, КАК ИСТОЧНИК АЛЬТЕРНАТИВНОЙ ЭНЕРГИИ

Аннотация

Разработан опытный образец термомагнитного двигателя, использующего перепад температур порядка 10-15С для активации фазового перехода 1-го рода из ферромагнитного состояния в неупорядоченное в арсениде марганца. Показана возможность преобразования тепловой энергии, например свет - тень, в механическую энергию вращения диска или барабана. Рассмотрены варианты термомагнитного двигателя, как источника альтернативной энергии.

Введение

Известно устройство тактового термомагнитного двигателя, содержащее рабочие элементы из ферромагнитного материала, постоянные магниты, теплопроводящие стержни, тяги и коромысло с осевым упором [1].

Недостатком известного устройства является низкая частота переключения или низкая тактовая частота, определяемая высокой теплоемкостью теплопроводящих стержней, что исключает возможность его использования не как макетного образца, а в качестве реально работающего двигателя.

Наиболее близким по технической сущности является термомагнитный двигатель с гадолиниевым рабочим элементом, основу которого составляет ротор, выполненный в виде диска из теплонепроводящего материала (оргстекло), посаженный на дюралевую ось с возможностью вращения в горизонтальной плоскости [2].

Недостатком данного устройства является использование в качестве рабочего элемента гадолиния с температурой Кюри 16°С. Низкая температура Кюри создает, с одной стороны, неудобство с его использованием, с другой стороны, фазовый переход 2-го рода из ферромагнитного состояния в парамагнитное обусловливает плавное уменьшение намагниченности гадолиния с изменением температуры. Последнее определяет необходимый температурный диапазон работы материала в устройстве как минимум 50°С