Владимир Дашков, *кандидат технических наук* Вадим Китиков, *кандидат технических наук* Андрей Пунько, *кандидат технических наук*

РУНИП "Институт механизации сельского хозяйства Национальной академии наук Беларуси"

УДК 637.116:621.65

ПЕРСПЕКТИВЫ РАЗВИТИЯ АВТОМАТИЗИРОВАННЫХ СИСТЕМ ДЛЯ ПРОМЫВКИ ДОИЛЬНОГО ОБОРУДОВАНИЯ

В настоящее время чрезвычайно актуальной как для Республики Беларусь, так и для других стран СНГ является проблема переоснащения молочно-товарных ферм и комплексов современным доильным оборудованием. Износ доильных установок советского производства составляет в среднем 60 %. Эксплуатация морально устаревшего оборудования приводит к тому, что техногенная составляющая в общих потерях молока достигает 40...50 %, или же 300...350 кг за лактацию. При этом немаловажным является и качество получаемого молочного сырья [1].

Одной из ключевых составляющих доильной установки, влияющих на качество молока, является система промывки, ее программные элементы, обеспечивающие эффективную промывку доильных аппаратов и молокопроводных путей. Обзор литературных данных и анализ эффективности работы современных зарубежных и отечественных систем автоматической промывки доильных установок показал, что основной тенденцией является переход от электромеханических программаторов к микропроцессорным системам. Это позволяет существенно повысить надежность и расширить функциональные возможности автоматов промывки – изменять параметры, осуществлять индикацию текущих этапов программы, одновременно сигнализировать о сбоях и неисправностях.

В настоящее время учеными РУНИП "ИМСХ НАН Беларуси" разработан современный автомат промывки доильного оборудования с использованием элементов автоматики и электроники. Такое оборудование адаптировано к использованию как в составе доильных установок с доением коров в стойлах в молокопровод, так и для доильных залов типа "Елочка", "Тандем", "Параллель". Его технологическая схема представлена на рис. 1.

В ванне промывки I (рис. 1) расположены: емкость для сыпучих моющих растворов (порошка) 1; датчик уровня 2; нагреватель (ТЭНы) 3; датчик температуры 4; клапан промывки 5 с клапаном аэрирования 6; циркуляционный клапан 7.

Узел подачи воды II включает в себя электромагнитные клапаны холодной X.В. 8 и горячей воды Г.В. 9 и стационарный электроводонагреватель 10, в который на вход клапан Г.В. подает холодную воду, а на выходе горячая вода поступает в ванну промывки.

Узел подачи промывочной жидкости III состоит из двух дозирующих емкостей кислотных 11 и щелочных 12 растворов, в которые вакуумными клапанами 13 подаются соответствующие концентраты. Управляющие клапаны 14 и 15 обеспечивают слив требуемого количества жидкости в ванну промывки.

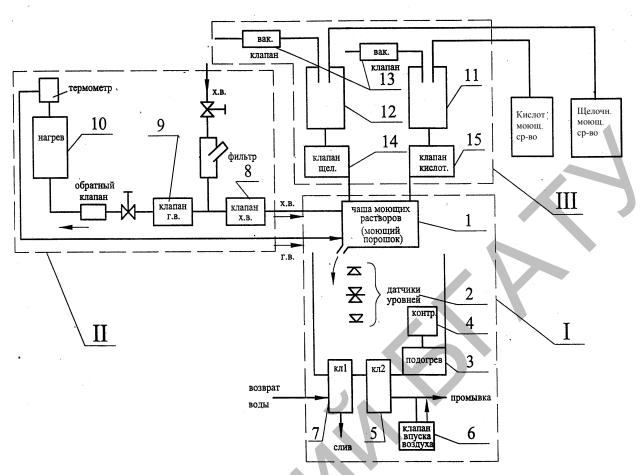


Рисунок 1. Технологическая схема работы автомата промывки

Автоматом промывки предусмотрено выполнение 5 программ:

- 1. Преддоильное ополаскивание системы молочных коммуникаций (Программа 1).
- 2, 3. Последоильная промывка с жидким кислотным (щелочным) моющим средством (Программы 2 и 3).
 - 4. Последоильная промывка с дезинфекцией (Программа 4).
- 5 Последоильная промывка с порошкообразным кислотным (щелочным) моющим средством (Программа 5).

Преддоильное ополаскивание заключается в циркуляционном движении теплой воды по молокопроводным путям с последующим сливом и удалением остатков влаги (просушкой).

Последоильная промывка включает следующие этапы:

- прополаскивание молокопроводных путей;
- циркуляционная промывка с моющим средством;
- циркуляционное полоскание;
- удаление остатков влаги;
- прополаскивание;
- удаление остатков влаги;
- включение молочного насоса для удаления остатков воды из молокоприемника;
- выключение вакуумных насосов.

В программу дезинфекции включены этапы циркуляционной промывки с дезинфицирующим средством, полоскания и удаления остатков влаги.

Процесс промывки, дезинфекции и полоскания происходит согласно разработанной программе с оптической индикацией всех операций на пульте управления.

Технологический процесс осуществляется следующим образом. Подача холодной и горячей воды в емкость промывки осуществляется электромагнитными клапанами 8, 9 рис. 1. После достижения верхнего уровня заполнения и добавления при необходимости моющих средств открывается клапан промывки 2 и промывочный раствор поступает в промывочный трубопровод. Промывочная жидкость движется через доильные аппараты, через датчики потока молока, молокопроводы и накапливается в молокоприемнике, откуда откачивается насосом молокоприемника в автомат промывки. В зависимости от состояния циркуляционного клапана 7 раствор направляется обратно в ванну (происходит циркуляция) или сливается в канализацию.

Как и в зарубежных аналогах, в разработанном автомате промывки предусмотрена возможность дополнительного инжектирования воздуха в молокопроводную систему (функция аэрирования). Для этого на промывочном трубопроводе установлен клапан впуска воздуха. Периодическое открытие клапана вызывает подсос воздуха в систему, что позволяет за счет увеличения скорости движения газожидкостной смеси и усиления механического воздействия на внутреннюю поверхность молочных коммуникаций, повысить эффективность промывки, снизить расход воды и моющих средств. По этой причине для очистки внутренних поверхностей от остатков молока и моющих средств не используется традиционная эластичная губка.

Чтобы добиться более высокого уровня гигиены при проведении тех программных операций, для которых предусмотрено использование горячей воды, в емкости промывки установлены электронагревательные элементы для дополнительного обогрева промывочной жидкости. Их применение особенно оправдано, если автомат промывки используется в составе доильных установок с трубопроводами из нержавеющей стали. В осенне-зимний период это позволяет подогревать молокопроводы перед доением, предотвращая застывание молочного жира на стенках труб, и обеспечивает компенсацию теплопотерь моющего раствора, поддерживая его температуру на необходимом уровне.

Результаты государственных приемочных испытаний автомата промывки [2] в производственных условиях показали, что разработанные режимы работы позволяют выполнить все необходимые этапы мойки и дезинфекции молочного оборудования в автоматическом режиме и обеспечить требуемое качество промывки доильного оборудования. В ходе испытаний применялись новейшие отечественные разработки — моющие и дезинфицирующие средства для доильно-молочного оборудования - "Милю", "ВАМ", "Рапин Б", "Рапин ВН". Их использование оправдано как с точки зрения технико-экономической эффективности применения, так и зооветеринарной оценки качества этих средств и результатов их воздействия на технологическое оборудование и получаемое молочное сырье. Они не изменяют состав материала и свойств деталей доильного оборудования, а качество промывки оборудования отвечает современным санитарным требованиям.

ЗАКЛЮЧЕНИЕ

1. Мировой опыт эксплуатации доильного оборудования показывает, что одной из ключевых составляющих, обеспечивающих получение качественного молочного сырья при минимальных затратах ручного труда, является использование

различных средств механизации, в том числе применение автоматических систем промывки доильного оборудования.

- 2. Система управления современного автомата промывки должна базироваться на микропроцессорной основе, что позволяет существенно повысить надежность работы и расширить функциональные возможности оборудования менять программу (циклограмму) работы в зависимости от вида применяемых моющих и дезинфицирующих средств и условий эксплуатации, осуществлять индикацию текущих этапов программы, сигнализировать о неисправностях и сбоях.
- 3. Анализ результатов проведенных исследований показал, что применение предложенной конструктивной схемы и технологических алгоритмов работы позволило разработать производительный и экономичный автомат промывки, который обеспечивает эффективную мойку доильного оборудования. Реализация и внедрение новой разработки на МТФ республики позволит повысить качество получаемой продукции.

ЛИТЕРАТУРА

- 1. Цой Ю.А., Мишуров И.П., Кирсанов В.В., Зеленцов А.И. Тенденции развития доильного оборудования за рубежом. ФГНУ Росинформагротех, 2000. с. 46-49.
- 2. Протокол № 109-2004 государственных приемочных испытаний опытного образца адаптированного автомата промывки доильного оборудования с электронагревателем. ГУ БелМИС, 2004г.