МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА И ПРОДОВОЛЬСТВИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

Учреждение образования «БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра технологии металлов

А. А. Андрушевич, Т. К. Романова

МАТЕРИАЛОВЕДЕНИЕ

Пособие

Минск БГАТУ 2010 УДК 669.01:620.178(07) ББК 34.2я7 А66

> Рекомендовано методическим советом факультета «Технический сервис в АПК» БГАТУ. Протокол № 7 от 28 октября 2009 г.

Рецензенты:

доктор технических наук, профессор кафедры «Материаловедение в машиностроении» БНТУ *М. В. Ситкевич;* заведующий кафедрой «Ремонт тракторов, автомобилей и сельскохозяйственных машин» БГАТУ, кандидат технических наук, доцент *Г. И. Анискович*

Андрушевич, А. А.

А66 Материаловедение: пособие /А. А. Андрушевич, Т. К. Романова. – Минск: БГАТУ, 2010. – 120 с. ISBN 978-985-519-269-6.

В пособии в краткой форме рассмотрены основные темы и вопросы по разделу «Материаловедение» дисциплины «Материаловедение. Технология конструкционных материалов».

Предназначается для студентов и учащихся агротехнических специальностей, может быть использовано магистрантами, аспирантами и специалистами предприятий агропромышленного комплекса, работающими в области ремонта и эксплуатации сельскохозяйственной техники.

УДК 669.01:620.178(07) ББК 34.2я7

ISBN 978-985-519-269-6 © БГАТУ, 2010

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ	
ГЛОССАРИЙ.	9
ГЛАВА 1. АТОМНО-КРИСТАЛЛИЧЕСКОЕ СТРОЕНИЕ	1.0
МЕТАЛЛОВ И СПЛАВОВ.	13
1.1. Применение различных материалов в машиностроении	
и ремонтном производстве.	
1.2. Классификация металлов.	
1.3. Атомно-кристаллическое строение металлов.	
1.4. Типы кристаллических решеток	
1.5. Типы связей в твердых телах	
1.6. Строение реальных кристаллов.	
1.7. Дефекты кристаллического строения металлов и сплавов	
1.8. Анизотропия и аллотропия кристаллов	
1.9. Процесс кристаллизации	
1.10. Термодинамические основы фазовых превращений	
1.11. Кривые охлаждения и нагрева металлов и сплавов	22
1.12. Влияние степени переохлаждения,	
примесей на процесс кристаллизации.	
1.13. Образование зерен и дендритов.	
ГЛАВА 2. ТЕОРИЯ СПЛАВОВ	25
2.1. Система. Металлический сплав. Компонент. Фаза	25
2.2. Твердые растворы	25
2.3. Химические соединения.	
2.4. Механические смеси	
2.5. Фазовые превращения в твердом состоянии	28
2.6. Построение диаграмм состояния сплавов	
экспериментальным путем	28
2.7. Кривые охлаждения бинарных сплавов	29
2.8. Диаграммы состояния бинарных сплавов.	30
2.9. Правило фаз	31
2.10. Правило отрезков	3
2.11. Диаграммы состояния двойных сплавов	
с неограниченной растворимостью компонентов	
в жидком и образованием механической смеси твердом состоянии	33

2.12. Диаграммы состояния двойных сплавов с неограниченной	
растворимостью компонентов в жидком и твердом состоянии	34
2.13. Диаграммы состояния двойных сплавов	
с неограниченной растворимостью компонентов	
в жидком и ограниченной растворимостью в твердом состоянии	35
2.14. Диаграммы состояния двойных сплавов	
с ограниченной растворимостью компонентов	
в твердом состоянии с образованием перитектики	36
2.15. Диаграммы состояния двойных сплавов	
с образованием устойчивого химического соединения.	
2.16. Закон Н. С. Курнакова для двухкомпонентных сплавов	37
ГЛАВА 3. ЖЕЛЕЗОУГЛЕРОДИСТЫЕ СПЛАВЫ.	39
3.1. Железо и его свойства	39
3.2. Кривая охлаждения чистого железа.	39
3.3. Аллотропические формы железа и их свойства	40
3.4. Углерод и его свойства.	
3.5. Цементит и его свойства.	41
3.6. Диаграмма состояния сплавов «железо – цементит»	41
3.7. Фазовый состав железоуглеродистых сплавов	43
3.8. Структурные составляющие железоуглеродистых сплавов	
и их свойства.	44
3.9. Кривые охлаждения железоуглеродистых сплавов	45
3.10. Значение диаграммы состояния сплавов «железо – цементит»	46
3.11. Диаграмма состояния сплавов «железо – графит».	46
ГЛАВА 4. УГЛЕРОДИСТЫЕ ЛЕГИРОВАННЫЕ СТАЛИ. ЧУГУНЫ	48
4.1. Влияние углерода на структуру стали	
4.2. Влияние углерода на свойства сталей.	
4.3. Влияние постоянных примесей на структуру и свойства сталей	
4.4. Классификация и маркировка углеродистых сталей	
4.5. Применение углеродистых сталей	5 0
в сельскохозяйственном машиностроении,	
строительстве и ремонтном производстве	53
4.6. Классификация и маркировка легированных сталей.	
4.7. Применение легированных сталей.	
4.8. Влияние химического состава и скорости охлаждения	
на структуру и свойства чугуна	59

4.9. Графитизация чугуна	60
4.10. Получение и маркировка белых, серых, ковких	
и высокопрочных чугунов	61
4.11. Структура и свойства белых, серых, ковких	
и высокопрочных чугунов	62
4.12. Применение белых, серых, ковких и высокопрочных ч	угунов64
ГЛАВА 5. ОСНОВЫ ТЕОРИИ ТЕРМИЧЕСКОЙ ОБРАБОТКІ	И65
5.1. Сущность термической обработки	65
5.2. Образование аустенита при нагреве стали	65
5.3. Действительная и наследственная величина зерна	66
5.4. Кинетика превращений переохлажденного аустенита	66
5.5. Перлитное превращение.	68
5.6. Промежуточное превращение.	69
5.7. Мартенситное превращение.	70
5.8. Диаграмма изотермического превращения аустенита,	
ее значение	71
5.9. Превращение аустенита при непрерывном охлаждении.	72
5.10. Превращения при отпуске.	73
ГЛАВА 6. ТЕХНОЛОГИЯ ТЕРМИЧЕСКОЙ ОБРАБОТКИ СТ	ГАЛИ75
6.1. Классификация видов термообработки	75
6.2. Нагрев при термической обработке	75
6.3. Защитные атмосферы.	76
6.4. Отжиг, его виды и применение.	76
6.5. Нормализация.	78
6.6. Закалка стали, ее виды и применение	79
6.7. Выбор охлаждающих сред при термообработке	80
6.8. Прокаливаемость стали.	81
6.9. Дефекты, возникающие при закалке	82
6.10. Отпуск стали, его виды и применение	83
6.11. Термомеханическая обработка стали	84
6.12. Влияние термической обработки на структуру	
и свойства стали.	85
6.13. Методы поверхностного упрочнения стали	86
6.14. Методы поверхностной закалки стали.	86
6.15. Поверхностная закалка с индукционным нагревом	87
6.16. Поверхностная закалка с газопламенным нагревом	88

6.17. Лазерная закалка	88
6.18. Основы химико-термической обработки.	89
6.19. Цементация стали.	89
6.20. Азотирование стали.	90
6.21. Цианирования и нитроцементация стали	91
6.22. Диффузионная металлизация.	91
6.23. Марки сталей для различных видов	
химико-термической обработки.	92
ГЛАВА 7. ИНСТРУМЕНТАЛЬНЫЕ МАТЕРИАЛЫ	94
7.1. Инструментальные стали	94
7.2. Классификация инструментальных сталей	95
7.3. Термическая обработка инструментальных сталей	97
7.4. Применение инструментальных сталей.	97
7.5. Быстрорежущие инструментальные стали, их	
маркировка и термическая обработка	99
7.6. Твердые сплавы, их маркировка, получение,	
состав и применение	
7.7. Сверхтвердые материалы, получение, состав и применение	102
ГЛАВА 8. ЦВЕТНЫЕ МЕТАЛЛЫ И СПЛАВЫ	103
8.1. Медь и ее сплавы, маркировка и применение.	103
8.2. Латуни, маркировка, применение.	103
8.3. Бронзы, маркировка, применение.	104
8.4. Алюминий и его сплавы, маркировка и применение	
8.5. Деформируемые алюминиевые сплавы	106
8.6. Литейные алюминиевые сплавы.	107
8.7. Антифрикционные сплавы на основе меди,	
алюминия, свинца и олова.	108
ВОПРОСЫ	
ДЛЯ САМОСТОЯТЕЛЬНОЙ ПОДГОТОВКИ СТУДЕНТОВ	110
ЗАКЛЮЧЕНИЕ	116
ПИТЕРАТУРА	117