Внедрение низкотемпературных схем тепловой обработки крахмального сырья (при 60°C) позволяет перевести крахмал в растворимое состояние и осуществить подготовку сырья к брожению в одном аппарате гидроферментатитвной обработки.

Анализ действующих схем периодического и непрерывного разваривания крахмального сырья при производстве этилового спирта-сырца показал, что внедрение современной энергосберегающей схемы низкотемпературного разваривания на ОСППЦ «Хотовской спиртзавод» РУП «Минск Кристалл» позволило снизить расход энергоресурсов на 20%. При всех равных затратах на сырье, вспомогательные материалы, налоги, цеховые и общецеховые расходы по сравнению с традиционной технологией расход пара сократился с 6,2 усл. ед. на 1 дал до 4,9 усл. ед. Все это привело к снижению себестоимости и повышению рентабельности производства спирта-сырца на ОСППЦ «Хотовской спиртзавод» РУП «Минск Кристалл».

Дальнейшее увеличение эффективности производства спирта-сырца возможно при осуществлении автоматизации и компьютеризации технологического процесса. Перспективно также строительство и введение в эксплуатацию цеха комплексной переработки послеспиртовой барды с получением кормовых продуктов.

ЛИТЕРАТУРА

 Орехов А.И. Спиртовая промышленность Республики Беларусь: современное состояние и перспективы развития // Пищевая промышленность: наука и технологии. — 2011. № 1. — С. 3—7.

УЛК 621.35:636.08

ВЛИЯНИЕ ЭЛЕКТРОХИМИЧЕСКИ АКТИВИРОВАННЫХ РАСТВОРОВ НА ПРИВЕСЫ МОЛОДНЯКА КРС ПРИ КОРМЛЕНИИ И ПОЕНИИ

Кардашов П. В., к.т.н., доцент, Корко В.С., к.т.н., доцент, Дубодел И. Б., к.т.н., доцент, Кардашов М. В., магистрант

УО « Белорусский государственный аграрный технический университет» г. Минск, РБ

В технологии выпаивания и кормления телят кормом, обработанным электроактивированной водой, очень существенным является качество поступающей в их организм воды, поскольку интенсивность роста живых организмов в значительной степени зависит от скорости ферментативных реакций в их клетках, а весь метаболизм равняется на скорость самой медленной реакции в организме. Значит, для ускорения деления клеток и, следовательно, увеличения прироста живой массы молодого растущего организма необходимо ускорить эти реакции.

В результате электрохимической активации вода переходит в метастабильное (активированное) состояние, проявляя при этом в течение нескольких десятков часов повышенную реакционную способность в различных физико-химических процессах. Вода, активированная у катода (католит), обладает повышенной активностью электронов и имеет ярко выраженные свойства восстановителя. Соответственно, вода, активированная у анода (анолит), характеризуется пониженной активностью электронов и проявляет свойства окислителя.

Совокупность реакций в клетке связана с передачей ионов или электронов от одного соединения - донора к другому - акцептору. И именно биологический механизм действия активированных растворов сводится к изменению конкурентного отношения свободно радикального и ферментативного окисления в пользу последнего, тем самым регулируется степень подавляющего влияния свободно радикального окисления на большинство метаболических процессов, что создает оптимальные условия для метаболизма, обеспечивает нормальный рост и развитие клеток и тканей.

Производственные испытания эффективности использования католита при выпойке телят проведены в весенний период 2010г на комплексе по откорму КРС. Католит разводили

теплой водопроводной водой в соотношении 2:1 и выпаивали опытной группе №1 утром один раз в неделю по 3...5 мл на 1 кг живой массы теленка, а опытной группе №2 без разведения по 5...7 мл на 1 кг живой массы. Контрольную группу выпаивали теплой водопроводной водой без использования католита. Животные были подобраны аналогами по породе, возрасту, массе. Результаты испытаний приведены в таблице 1.

Таблица 1 - Показатели эффективности использования католита при поении телят

Показатели	Контроль	Опытны	Опытные группы		
	İ	Nol	№ 2		
Количество животных:	1				
в начале опыта	15	16	14		
в конце опыта	14	15	15		
Общая живая масса, кг	1191	1189	1389		
Средняя масса одного					
животного в начале опыта, кг	78,7	74,3	99,2		
Общий прирост живой массы					
за 46 дней, кг	1620	1800	2160		
Средняя масса одного					
животного в конце опыта, кг	115,7	120,0	144,0		
Среднесуточный прирост					
живой массы:					
в граммах	804,3	993,4	973,9		
- в процентах	100	123,8	121,1		

Производственные испытания эффективности использования католита при кормлении телят проведены в зимний период 2011г на комплексе по откорму КРС. Опыты проводились в телятнике на 300 голов. Были сформированы две группы телят в возрасте 3-4 месяцев, по 13 голов в группе. Средняя живая масса животных в контрольной группе составляла 188,4 кг, в опытной — 151.5 кг.

В процессе испытания сенаж из злаковых трав, подаваемый в кормушки, обрабатывали электрохимически активированным водным раствором – католитом (pH = 9, OBП = -600 мВ) из расчета 5...7 мл на 1 кг живой массы животного. Кормление телят опытной группы, обработанным сенажом, осуществляли один раз в неделю. Результаты испытания приведены в таблице 2. Таблица 2 — Эффективность использования католита при кормпении молодняка КРС.

Показатели	Группы животных		
	контрольная	пытная	
Количество телят	13	13	
Средняя масса 1 животного, кг:			
- в начале опыта	188,4	151,5	
- в конце опыта	205,4	171,5	
Среднесуточный прирост живой массы			
телят:			
- В КГ	0,560	0,666	
- в процентах	100	118,9	

Научные результаты исследований: производственные испытания подтвердили эффективности применения электрохимически активированной воды в определенных дозах и режимах для поения и кормления молодняка животных; применение католита для выпойки и приготовления корма способствует улучшению его поедаемости и переваримости, что обес-

печивает повышение среднесуточного прироста живой массы телят на 18-20% по сравнению с контролем.

УДК 621.365: 631.371

ВЫСОКОКАЧЕСТВЕННЫЕ СЕМЕНА С.-Х. РАСТЕНИЙ – ЗАЛОГ ОТЛИЧНОГО ПРОДОВОЛЬСТВЕННОГО СЫРЬЯ

Городецкая Е.А. кандидат технических наук, доцент

УО «Белорусский государственный игротехнический университет» Минск, Беларусь

Показатели	Экспозиция			
	Контроль	7 мин	15 мин	30 мин
Энергия прорас-				100
тания,%	28	45	46	52
Всхожесть,%	44	60	59	54

Таблица 3 Влияние различных режимов плазменной обработки на всхожесть и энергию прорастания гороха «Агат»

- 4. Кабашникова Л.Ф. // Способ ранней диагностики эффективности многокомпонентных капсулирующих составов для обработки семян. Методические указания. Минск. 2003. С.
- 5. Городецкая, Е.А.Городецкая, В.С.Корко, В.В.Ажаронок Стимулирование всхожести семян высокочастотным полем/ Агропанорама, № 2, 2011 С. 11-13.

УЛК 631.362.36:633.432

ЭЛЕКТРОСЕПАРАЦИЯ - ВЫСОКОЭФФЕКТИВНЫЙ СПОСОБ РАЗДЕЛЕНИЯ СЫ-ПУЧИХ СМЕСЕЙ

Городецкая Е. А.

ГНУ«Центральный Ботанический сад Национальной академии наук Беларуси» Минск, Республика Беларусь

Кардашов П.В., Дубодел И.Б. канд. техн. наук, доц.

VO «Белорусский государственный агротехнический университет», Минск, Республика Беларусь

Резюме: Сложность доведения семян сельскохозяйственных, лекарственных и пряноароматических растений до посевных кондиций определяется их физическими свойствами. Нами был предложен и опробован способ диэлектрического разделения семенного вороха с целью выделения сильных выполненных семян для промышленной агрокультуры.

Пищевые и перерабатывающие предприятия агропромышленного комплекса, в том числе и хозяйства-производители, постоянно решают важнейшую народно-хозяйственную задачу — как не только получить экологически возможно чистые продукты, но и сохранить, переработать их и реализовать без потерь потребителю.

В Западных странах разработаны дорогостоящие и высокопродуктивные машины, устройства и технологии. Специалисты России и Беларуси предлагают не менее эффективные конструкции и технологии, обладающие научной, патентной и практической оригинальностью. Речь идет о конкурентноспособном устройстве разделения сыпучих смесей и выделении высокосдержащих фракций. Представляемый нами диэлектрический сепаратор конструкции лаборатории перспективных средств электросепарации семян (руководитель — заслуженный ученый России, профессор В.И.Тарушкин) МГАУ (Москва) призван разделять сухие сыпучие мелкодисперсные смеси с учетом электрических свойств частиц и получением фракций гарантированного качества и нужных свойств. Например, внедрение диэлектрического сепарирующего устройства (ДСУ) в технологической линии безотходной переработ-