Техническое и кадровое обеспечение инновационных технологий в сельском хозяйстве

Таблица 1 - Сравнительная характеристика качественных паказателей полученных волокон льна масличного и регламентированных стандартов

	1			
№	Vоностронии из намератани водомия	Льноватин		
Π/Π	Качественные показатели волокна	ГОСТ 26604-85	Разработаная технология	
1.	Номер волокна	№ 6	№ 6	
2.	Нормирова-ная массовая доля ко- стры и сорных примесей, %	15,0	15,0	
3.	Разрывное усилие скрученной ленты, даН, не менее чем	15,9	15,9	

Таблица 2 - Критериальные показатели качества полученых волокон и льноватина со льна масличного

		Качественные показатели волокна			Качественные показатели нетканого материала			
№ п/п	Тип нетка- ного мате- риала	номер волокна, №	разрывное усилие скрученной ленты, даН, не менее чем	Нормированая массовая доля костры и сорных примесей, %	Поверхностная плотность, Γ/M^2	скрученн полоски по мером 50>	ое усилие пой ленты олотна раз- (100 мм, Н менее чем ширина	содер- дер- жание кост- ры, %
1.	Льноватин	№ 6	15,9	15,0	400±50	200	200	10-12

Внедрение принципиально новых технологий комплексной переработки льна масличного на Украине - это первый шаг к выходу отечественных производителей на европейский рынок с инновационной продукцией, конкурентоспособной наряду с товарами зарубежного производства. В результате разработанной технологии, получается волокно №6, которое пригодно для производства качественного льноватина, а годовой экономический эффект достигается в размере 479 661,55 грн./год.

Литература

- 1. Живетин В.В. Масличный лен и его комплексное развитие / В.В. Живетин, Л.Н. Гинзбург. М .: ЦНИИЛКА, 2000 389 с.
- 2. Чурсина Л.А. Інноваційні технології одержання нетканих та целюлозовмісних матеріалів з льону олійного / Л.А. Чурсина, Тихосова Г.А., Т.Н. Головенко, И.А. Меняйло-Басиста // Монография. Херсон: Гринь Д.С., 2014 304 с.
- 3. ГОСТ 26604-85 «Полотна нетканые (подоснова) антисептиро-ванные из волокон всех видов для теплозвукоизоляционного линолеума. Технические условия».

УДК 677.027.5.04

ДЕКОРТИКАЦИОННАЯ ОБРАБОТКА ЛЬНЯНОЙ СОЛОМЫ ДЛЯ ПОЛУЧЕНИЯ ЦЕЛЛЮЛОЗЫ

Богданова О.Ф., к.т.н., профессор; **Путинцева С.В.,** ст. преподаватель Херсонский национальный технический университет

Анализ патентной зарубежной литературы показывает, что целлюлозное производство потребляет около 95% всей перерабатываемой в мире целлюлозы из древесины хвойных и лиственных пород. В настоящее время потребность на Украине в сырье для производства целлюлозно-бумажных материалов в значительной степени обеспечивается за счёт импорта, что отрицательно влияет на основные показатели работы отрасли. Бумажные и картонные фабрики значительное время не работают из-за отсутствия сырья. Поэтому возрастающий дефицит древесного сырья обуславливает целесообразность применения материалов из однолетних растений. Лубоволокнистые культуры принадлежат к растениям, содержащим луб, в состав, которого входит прочная длинноволокнистая целлюлоза.

Поскольку стебель из льна - кудряша состоит в основном на 75-85% из целлюлозы и нецеллюлозных примесей, поэтому его можно рассматривать как основной вид сырья для

целлюлозной промышленности. Это позволит расширить сырьевую базу для производства продукции целлюлозно-бумажной промышленности, уменьшить затраты на экспорт импортного сырья и снизить стоимость полученной продукции по сравнению с аналогичной импортной.

В работе было изучено влияние механических действий (декортикации) льняной соломы для получения технической целлюлозы при различных параметрах щелочной обработки.

Механический процесс выделения луба из соломы льна (декортикация) состоит из следующих этапов:

- а) подсушка соломы до оптимальной влажности;
- б) мятье соломы;
- в) отсеивание костры от мятой соломы.

Для мятья материала использовали пару гладких вальцов с мяльно-трепального агрегата. Максимальное давление, которое образуется на паре гладких вальцов одной пружиной, составляет 5000 Н. Давление, при котором осуществляется плющение льносоломы, рассчитывается по формуле:

$$D = \frac{\eth}{l} \tag{1}$$

где: p – давление, которое создаётся мяльными вальцами, H; 1 – длина образца (ширина слоя, который проминается), м.

В нашем эксперименте Р=106 кН/м.

Полученный луб, с закостренностью 10-15 %, из льняной соломы подвергался варке с применением натронного способа делигнификации.

Влияние механических воздействий при получении различных волокнистых полуфабрикатов изучалось по натронному способу при изменении следующих факторов: концентрации раствора, температуры и продолжительности варки.

Технологическая схема получения технической целлюлозы состоит из таких основных операций: предварительной подготовки сырья; механической обработки (декортикации); варки; промывки; отжима; сушки.

С целью улучшения качества целлюлозы проводили 1-3х кратное мятье с использованием щелочного раствора с концентрацией от 30 до 45 г/л гидроокиси натрия.

Экспериментальные данные приведены в таблице1.

Таблица 1 – Сравнение оптимальных параметров получения целлюлозы натронным способом с декортикацией льняной соломы и натронным (классическим) способом

Натронный способ с декортикацией						
Количество	Концентрация,	Температура, ⁰ С	Продолжит.	Выход полуфабри-	Категория полу-	
обработок	г/л	температура, С	варки, мин.	катов, %	фабрикатов.	
1	45	180	210	60,2-59,5	Ц.В.В.	
2	35	170	210	53.2-50,8	Ц.Н.В	
3	30	170	180	50.5-45.8	Ц.Н.В.	
Натронный способ (классический)						
контроль	45	180	240	62.5-60,5	Ц.В.В.	

Примечание: ц.в.в. – целлюлоза высокого выхода и ц.н.в.- целлюлоза нормального выхода

При декортикации льняной соломы с изменением температуры, продолжительности варки и концентрации щёлочи были получены целлюлозные полуфабрикаты с различным выходом, которые находятся в следующих пределах: 62,5 – 45.8 %, т.е. целлюлоза высокого выхода и целлюлоза нормального выхода. Следует заметить, что продолжительность натронной варки с декортикацией льняной соломы по сравнению с натронным способом без декортикации снизилась на 30минут и концентрация щелочного раствора от веса сухого вещества снизилась на 15 г/л для получения целлюлозы нормального выхода.

Техническое и кадровое обеспечение инновационных технологий в сельском хозяйстве

На основании проведённых исследований, сравнивая натронный с декортикацией и натронный (классический) методы получения целлюлозного полуфабриката можно указать на положительное влияние механических воздействий на технологические параметры варки.

3-х кратное мятье льняной соломы с последующей щелочной обработкой может привести к снижению прочности полученной целлюлозы. Поэтому были определены физикомеханические характеристики, полученной целлюлозы в соответствии с ГОСТ 14363.4-89. Испытание качественных характеристик полученной целлюлозы проводили после размола в стандартном аппарате до известной степени помола, определяемой на измерителе степени помола (от $45^{0-}60^{0}$ ШР) в течение10-20 мин. Затем целлюлозу отливали на листоотливном аппарате. Отливки подсушивают и испытывают по физико-механическим показателям. Результаты качественных характеристик, полученной технической целлюлозы представлены в таблице 2.

Таблица 2 - Качественные характеристики целлюлозы, полученной натронным способом с декортикацией и натронным (классическим)способом

narponnism (kitacen reekim)enoecoom							
	Физико-механические характеристики						
Наименование способов обработки	Разрывная длина, м	Излом, ч.д.п. (число двойных перегибов)	Абсолютное сопротивление продавливанию, кПа	Абсолютное сопротивление раздиранию, Н			
Натронный способ с декортикацией	5075	36	250	36			
Натронный способ (классический)	5070	26	246	33			

На основании полученных результатов, можно сделать вывод, что декортикация льняной соломы положительно влияет на качественные характеристики полученной технической целлюлозы. А именно, четко прослеживается следующая закономерность: в результате декортикации льняного волокна с последующей химической обработкой значительно увеличивается излом - на 10 единиц, т.е. на 38,5 % с постоянным сохранением разрывной длины и абсолютных сопротивлений продавливанию и раздиранию по сравнению с натронным (классическим) способом.

Поэтому можно считать, что применение декортикации льняной соломы перед натронным способом получения технической целлюлозы является эффективным приемом усовершенствования процесса обработки льносоломы, который повышает качество целлюлозы.

Литература

- 1. Шитов А.Ф. Технология целлюлозно-бумажного производства. М.: Лесная промышленность, 1968.-624с.
- 2. Богданова 0.Ф., Путінцева С.В. Чурсіна Л.А. Спосіб одержання лляної целюлози. Патент на корисну модель №48160 від10.03.2010.Бюл.№5 4с.
- 3. ГОСТ 14363.4-89 (ИСО 5269-3-79, ИСО 5269-2-80) «Целлюлоза. Методы подготовки проб к физико-механическим испытаниям».