Решение полученного уравнения колебаний штанги для малых сопротивлений b < k имеет вид  $\varphi = e^{-bt} A \sin\left(k_1 t + \alpha\right)$ ,  $(A - \text{амплитуда колебаний, } \alpha - \text{начальная } \varphi$ аза).

Период затухающих колебаний можно определить по зависимости Окончательные уравнения для определения параметров колебаний жестко закрепленной штанги примут вид

$$\varphi = e^{-\frac{\mu}{2I_z}t} A \sin\left(t\sqrt{\frac{cl^3}{3I_z} - \frac{\mu^2}{4I_z^2}} + \alpha\right), \quad T = \frac{2\pi}{\sqrt{\frac{cl^3}{3I_z} - \frac{\mu^2}{4I_z^2}}}.$$

#### Заключение

Используя уравнение Лагранжа второго рода, получены уравнения для определения параметров затухающих колебаний жесткозакрепленной штанги.

## Список использованной литературы

1. Бидерман, В.Л. Прикладная теория механических колебаний. Учеб. пособие для втузов. – М.: «Высш. школа», 1972. – 416 с.

# УДК 631.348.45

# ОБЕСПЕЧЕНИЕ НАДЕЖНОСТИ КОНСТРУКЦИИ И ПЛАВНОСТИ ХОДА ШТАНГИ СЕЛЬСКОХОЗЯЙСТВЕННОГО ПОЛЕВОГО ОПРЫСКИВАТЕЛЯ

# И.С. Крук, к.т.н., доцент

Белорусский государственный аграрный технический университет, Минск, Республика Беларусь

#### Введение

Постоянное совершенствование конструкций полевых опрыскивателей, направленное на повышение производительности путем увеличения рабочей ширины захвата, требует особого подхода к обеспечению надежности несущей конструкции штанги и качества выполнения технологического процесса. Способ навешивания и

система стабилизации штанги должны обеспечивать эффективное гашение колебаний и надежность ее несущей конструкции.

#### Основная часть

В настоящее время определены четыре основных метода виброзащиты штанги опрыскивателя [1]: снижение виброактивности источника, внутренняя виброзащита штанги, динамическое гашение колебаний и виброизоляция.

Первый метод основывается на достаточной амортизации остова опрыскивателя и высоким уровнем земледелия, в частности качественной подготовкой почвы. Остальные методы в той или иной степени основаны на использовании демпфирующих элементов в системе стабилизации штанги.

Выбор оптимального способа крепления штанги к раме опрыскивателя и рациональной системы стабилизации позволяет изолировать ее от колебаний остова, вызванных наездом опорных колес на препятствие или попаданием в неровность, а следовательно, повысить качество и эффективность опрыскивания.

Среди конструкций независимого крепления штанги к раме опрыскивателя [2] выделяются маятниковые (рисунок  $1,a,\delta,e$ ) и шарнирно-рычажные подвески (рисунок  $1,e,\delta$ ).

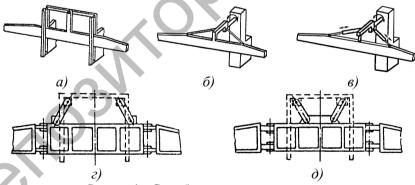



Рисунок 1 — Способы навешивания штанг: a — ведомая;  $\delta$  — жесткая;  $\epsilon$  — свободная;  $\epsilon$  — А-образной формы;  $\delta$  — V-образной формы

Для обеспечения равномерности распределения жидкости по ширине штанги должны иметь системы стабилизации (гашения ко-

лебаний, обеспечения плавности хода). Отсутствие данного устройства ведет к снижению качества опрыскивания. На хорошо выровненном поле амплитуда колебаний штанги длиной 10 м составляет 40 см при стандартной высоте установки штанги 50 см над обрабатываемой поверхностью.

Основным условием стабилизации является превышение собственной частоты остова опрыскивателя над собственной частотой штанги. Собственная частота штанги, а следовательно и плавность ее хода, может изменяться коэффициентами жесткости упругих связей и демпфирования, массой ее несущей конструкции, либо совместно двумя этими путями.

Широкое применение в конструкциях опрыскивателей получили способы изменения коэффициентов жесткости упругих связей и демпфирования системы за счет использования пружин, амортизаторов, рессор, пневмогидроаккумуляторов, пневморессор и др.

Нами разработаны системы стабилизации для маятниковых навесок штанг полевых опрыскивателей. Испытания систем стабилизации показали высокую эффективность гашения колебаний штанг шириной захвата 18 и 24 метров. Производство штанговых опрыскивателей с шириной захвата 18 и 24 метров было налажено в ОАО «Мекосан» (рисунок 2,*a*) и ОАО «Дятловская СХТ» (рисунок 2,*б*). В процессе испытаний и при производственной эксплуатации в условиях сельскохозяйственных организаций республики поломок несущих конструкций штанг не выявлено.

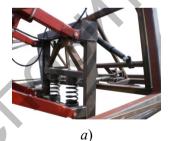





Рисунок 2 — Навеска штанги с системой стабилизации полевых опрыскивателей: a — «Мекосан-2500-18»;  $\delta$  — «ОШ-2300-18»

#### Заключение

Рассмотрены направления обеспечения надежности конструкции штанги и обеспечения качества выполнения технологического

процесса полевыми опрыскивателями. Обосновано использование демпфирующих элементов в системе стабилизации и гашения колебаний штанги.

# Список использованной литературы

- 2. Вартукаптейнис К.Э. Обоснование параметров и элементов конструкции штанговых опрыскивтаелей / Дисс. на соиск. уч. ст. канд. техн. наук. Елгава, 1984 г. -253 с.
- 3. Методика оценки технического состояния полевых штанговых опрыскивателей и технологические требования к ним / С.К. Карпович, Л.А. Маринич, И.С. Крук [и др.]; под общ. рек. И.С. Крука. Минск: БГАТУ, 2016. 140 с.

УДК 635.21:631.332.7

# РУЧНАЯ КАРТОФЕЛЕСАЖАЛКА ДЛЯ ПРОРОСШИХ КЛУБНЕЙ

### В.В. Томчук, ассистент

Винницкий национальный аграрный университет, г. Винница, Украина

#### Ввеление

Посадка клубней – одна из главных и ответственных операций выращивания картофеля. Ее выполняют картофелесажалками, главным узлом которых, есть дозирующий (вычерпывающий) аппарат. Назначение дозатора – отделение клубня от массива клубней в бункере и подача его в сошник. В результате происходит размещение клубней в борозде по одному на расстоянии 25-35 см.

В отличие от рассады овощей, семена картофеля не нуждаются в специальной ориентации при посадке в почву, поэтому эффективно дозируются ложечными аппаратами. Ложечный аппарат — это вертикальный или наклонный скребковый транспортер со скребками в виде ложечки, в которой легко поместить только один клубень весом 30-50 грамм. Клубень перемещается посредством ложечки и сбрасывается в борозду. В некоторых конструкциях ложечки могут монтироваться на дисках. На каждый рядок имеется свой дозатор [1].