ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ ВЫНУЖДЕННЫХ КОЛЕБАНИЙ ЖЕСТКО ПРИКРЕПЛЕННОЙ НА ОСТОВЕ ПОЛЕВОГО ОПРЫСКИВАТЕЛЯ ШТАНГИ

И.С. Крук¹, к.т.н., доцент, А.А. Тиунчик¹, к.ф.-м.н., доцент, Ян Р. Каминьский², д.т.н., профессор

¹Белорусский государственный аграрный технический университет, Минск, Республика Беларусь
²⁾ Варшавский институт естественных наук, Варшава, Республика Польша

Введение. Жесткое крепление штанги к остову опрыскивателя оправдано при небольшой ширине захвата (до 15 м) и рабочей скорости (до 7 км/ч) при обработках выровненных полей. При движении на высоких рабочих скоростях при копировании колесами микронеровностей поля жесткое крепление может привести к поломкам несущей конструкции штанги опрыскивателя.

Основная часть. Принимая ограничение, что элементы несущей конструкции штанги не изгибаются и отклоняются на одинаковый угол, колебательный процесс жестко закрепленной штанги широкозахватного полевого опрыскивателя может быть описан уравнением Лагранжа второго рода [1]

$$\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{\partial E_{\kappa}}{\partial \dot{\varphi}}\right) - \frac{\partial E_{\kappa}}{\partial \varphi} = -\frac{\partial E_{\pi}}{\partial \varphi} + Q_{\varphi}^{\mathrm{c}}, \qquad E_{\kappa} = \frac{a\dot{q}^{2}}{2},$$

где t - время; ϕ - обобщенная координата; $\dot{\phi}$ - обобщенная скорость; E_{κ} - кинетическая энергия системы; a — инерционный коэффициент E_{π} - потенциальная энергия системы; \mathcal{Q}_{ϕ}^{c} - обобщенная сила сопротивления среды (воздуха).

Направим вдоль штанги ось x (рисунок 1), тогда для любого элементарного отрезка длины dx и массы dm потенциальная энергия определяется суммой работы силы тяжести $dA_{\rm T}$ элемента, отклоненного от равновесного положения $\lambda_{\rm cr}$, и работы силы упругости $dA_{\rm y}$, действующей на элемент штанги при его перемещении

из состояния с координатой $z+\lambda_{\rm cr}$ в нулевое $\lambda_{\rm cr}$. Т.е. ${\rm d}E_{_{\rm II}}=dA_{_{\rm T}}+dA_{_{\rm y}}$ (${\rm d}A_{_{\rm T}}=-z{\rm d}mg$, z - отклонение элемента штанги от равновесного положения $\lambda_{\rm cr}$). ${\rm d}A_{_{\rm y}}=\int\limits_{-\infty}^{\lambda_{\rm cr}}F_{_{\rm y}}{\rm d}z$.

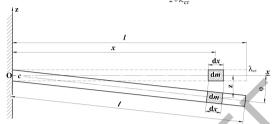


Рисунок 1 – Схема к определению параметров колебаний штанги

Учитывая, что $F_{\rm y}=-cz$ (c — коэффициент жесткости конструкции), $z=\varphi x$ (x — горизонтальная координата элемента штанги), полная потенциальная энергия всей штанги длинной l равна $E_{\rm n}=\frac{c}{2}\varphi^2\int\limits_0^lx^2{\rm d}x=\frac{c}{6}l^3\varphi^2.$

Обобщенная сила, соответствующая этой потенциальной энергии E_{π} , равна

$$Q_{\varphi}^{\pi} = -\frac{\partial E_{\pi}}{\partial \varphi} = -\frac{2c}{6}l^{3}\varphi = -c_{R}\varphi, \qquad (c_{R} = \frac{1}{3}cl^{3}).$$

Обобщенная часть силы, вызванная силой сопротивления

$$Q^{c} = -\mu \dot{q} = -\mu \dot{\varphi}$$
.

С учетом полученных выражений для кинетической энергии и обобщенной силы из уравнения Лагранжа получим уравнение колебаний штанги:

- в дифференциальной форме $I_z\ddot{\varphi} + \mu \ddot{\varphi} + c_R \varphi = 0$, (I_z момент инерции относительно оси z).
 - в стандартном виде $\ddot{\phi} + 2b\dot{\phi} + k^2\phi = 0$, ($2b = \frac{\mu}{I_z}$ характеризует

величину сопротивления; $k^2 = \frac{c_R}{I_z}$ - циклическая частота).

Решение полученного уравнения колебаний штанги для малых сопротивлений b < k имеет вид $\varphi = e^{-bt} A \sin\left(k_1 t + \alpha\right)$, $(A - \text{амплитуда колебаний, } \alpha - \text{начальная } \varphi$ аза).

Период затухающих колебаний можно определить по зависимости Окончательные уравнения для определения параметров колебаний жестко закрепленной штанги примут вид

$$\varphi = e^{-\frac{\mu}{2I_z}t} A \sin\left(t\sqrt{\frac{cl^3}{3I_z} - \frac{\mu^2}{4I_z^2}} + \alpha\right), \quad T = \frac{2\pi}{\sqrt{\frac{cl^3}{3I_z} - \frac{\mu^2}{4I_z^2}}}.$$

Заключение

Используя уравнение Лагранжа второго рода, получены уравнения для определения параметров затухающих колебаний жесткозакрепленной штанги.

Список использованной литературы

1. Бидерман, В.Л. Прикладная теория механических колебаний. Учеб. пособие для втузов. – М.: «Высш. школа», 1972. – 416 с.

УДК 631.348.45

ОБЕСПЕЧЕНИЕ НАДЕЖНОСТИ КОНСТРУКЦИИ И ПЛАВНОСТИ ХОДА ШТАНГИ СЕЛЬСКОХОЗЯЙСТВЕННОГО ПОЛЕВОГО ОПРЫСКИВАТЕЛЯ

И.С. Крук, к.т.н., доцент

Белорусский государственный аграрный технический университет, Минск, Республика Беларусь

Ввеление

Постоянное совершенствование конструкций полевых опрыскивателей, направленное на повышение производительности путем увеличения рабочей ширины захвата, требует особого подхода к обеспечению надежности несущей конструкции штанги и качества выполнения технологического процесса. Способ навешивания и