УДК 631.171

СРЕДСТВА ВИЗУАЛИЗАЦИИ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ КАК ФАКТОР ПОВЫШЕНИЯ КАЧЕСТВА ПРОЦЕССА СУШКИ ЗЕРНОВЫХ

Якубовская Е.С., Воронко Д.И.

УО «Белорусский государственный аграрный технический университет» г. Минск, Республика Беларусь

Актуальной проблемой сельскохозяйственного производства является проблема сушки зерновых. Зерновые и семенные смеси (ворох) в процессе послеуборочной обработки на пунктах, агрегатах и комплексах должны быть доведены до требуемой кондиции [1]. Для получения продовольственного и семенного зерна высокого качества, параметры процесса сушки необходимо выбирать с учетом ряда факторов: как биофизических свойств зерна (вида и типа зерновой культуры, начальной его влажности и температуры), так и технологических показателей процесса сушки (начальной и конечной температуры и влажности теплоносителя, загрузки и экспозиции сушки зерна в сушилке и др.). Сушат зерно в сушилках различного типа. В последнее время наиболее распространены колонковые сушилки. На примере рассмотрения особенностей автоматизации поддержания режимов сушки в колонковой сушилке рассмотрим принципы организации визуализации управления.

В процессе сушки необходимо обеспечить требуемую влажность материала (14%), но не допустить перегрева зерновых. Согласно агротребованиям, необходимо поддерживать требуемый гемпературный режим при сушке. Это можно осуществить регулированием скорости прохождения материала через шахту, либо изменением температуры теплоносителя. Рационально воспользоваться первым способом с целью обеспечения максимальной производительности сушилки, установив допустимый максимум температуры теплоносителя. Не допустить перегрева материала можно, фиксируя температуру нагрева и скорость выгрузки из шахты. В зависимости от конечной влажности необходимо подавать материал на повторную сушку, либо на дальнейшую очистку. Таким образом, требуется исследовать сушилку по каналу температура зерновых — скорость выгрузки. Плавно изменять производительность выгрузного устройства можно с помощью преобразователя частоты, управляемого в соответствии с плавным законом регулирования посредством контролиера. Последний необходим для обработки сигналов от нескольких датчиков температуры, установленных в расчетных точках наибольшего нагрева.

Таким образом, процесс сушки зерновых выступает весьма сложным процессом, требующим учета ряда факторов, варьирования допустимой заданной температуры в зависимости от его вида, типа, исходных свойств (начальной влажности и температуры). В колонковых зерносушилках выходными управляемыми параметрами являются температура и влажность зерна на выходе, а входными управляющими параметрами - температура теплоносителя и скорость движения зерна через шахту. Начальные температура и влажность зерна на входе в сушилку, с точки зрения автоматического управления, являются мешающими воздействиями. Следовательно, в процессе сушки зерновых требуется контролировать температуру зерновых в точках максимального нагрева, устанавливая заданное значение в зависимости от вида культуры, ее типа, измеренной начальной влажности, и в зависимости от отклонения действительной температуры устанавливая скорость выгрузки из колонки; влажность зерновых на входе и выходе из сушилки. Отслеживать данные параметры помогут средства визуализации управления. К ним можно отнести панели оператора, связанные с контроллером (либо непосредственно дисплей контроллера), или SCADA-систему, обеспечивающую наблюдение параметров непосредственно на дисплее контроллера. Поскольку эксплуатация сушилок носит периодический характер, то видимо более приемлем первый вариант.

В случае организации визуализации управления по первому варианту следует рекомендовать использование контроллеров серии MELSEC FX [2], выбираемых по их функциональным возможностям (FX3U позволяет подключать панель оператора, обеспечивать плавное регулирование, управление преобразователем частоты и др.), количеству входов и выходов, напряжению питания, с возможностью подключения и программирования панели оператора семейства GOT1000. С помощью панели оператора наиболее значимые параметры контроля могут быть вынесены на дисплей панели. Через панель можно организовать и установку заданных значений параметров. Таким образом, обеспечив данную конфигурацию микропроцессорных средств управления через панель оператора необходимо обеспечить возможность:

- выбор вида и типа зерновой культуры с целью программного задания заданных значений температуры и влажности;
- отображение измеренных параметров (температуры в точках наибольшего нагрева, влажности исходной и конечной);
- технологическую сигнализацию (уровень, состояние исполнительных механизмов);
- аварийную сигнализацию (недопустимое отклонение от установленных режимов сушки, контроль топки и др.).

Таким образом, реализация визуализации автоматического управления посредством контроллера с панелью оператора при условии обеспечения программирования управления поддержания режимов сушки с учетом комплекса параметров сушки позволит оптимизировать автоматическое управление процессом сушки зерновых.

Литература

- 1. Шаршунов В.А. Сушка и хранение зерна : справ. пособие / В.А. Шаршунов, Л.В. Рукшан. — Минск : Мисанта, 2010.
- 2. Программируемый контроллер MELSEC FX: руководство пользователя. MITSUBISHI, 2008.

УДК 636.2

ОСНОВНЫЕ НАПРАВЛЕНИЯ ИННОВАЦИОННОЙ ДЕЯТЕЛЬНОСТИ В ЖИВОТНОВОДСТВЕ

Семкив Л.П., к.с.-х. н., доцент; Семкив М.В., к.с.-х. н., доцент; Бортневская Е.Р., аспирант, НовГУ ИСХПР, Российская Федерация

Осуществление инновационной деятельности в сельском хозяйстве, как известно, протекает под влиянием объективных экономических, биологических, социокультурных, геологических и множества других процессов, обуславливающих темпы и масштабы освоения инноваций. Направления развития инновационных процессов тесно связаны с особенностями конкретного региона, которые отражают характерные природно-экономические условия, сложившуюся структуру производства, уровень научного обеспечения и формирование региональной научно-технической политики.

В животноводстве инновационные процессы направлены на совершенствование технологии производства, хранения, переработки и реализации продукции. Так, приоритетами инновационной деятельности в животноводстве являются: повышение биологического потенциала продуктивности животных; выведение новых пород, типов и кроссов; совершенствование биологических систем их разведения; разработка индустриальных экологически безопасных технологий производства продукции животноводства, новых систем кормопроизводства; создание комплексных систем механизации, электрификации, автоматизации и компьютеризации производственных процессов в животноводстве. Для оценки освоения инноваций обычно рекомендуется