Секция 2.

ЭНЕРГОСБЕРЕГАЮЩИЕ ТЕХНОЛОГИИ ПРОИЗВОДСТВА ПРОДУКЦИИ РАСТЕНИЕВОДСТВА

УДК 635.64.631.589

ФОРМИРОВАНИЕ УРОЖАЙНОСТИ И КАЧЕСТВА ПЛОДОВ ТОМАТОВ НА МИНЕРАЛЬНЫХ СУБСТРАТАХ Веремейчик Л.А., Герасимович Л.С. (БГАТУ)

Приведены результаты исследований по замене импортной минеральной ваты на минеральные субстраты из сырья отечественного производства при возделывании томатов в малообъемной технологии. Показано, что использование данных субстратов позволяет формировать продуктивность томатов не ниже, чем на минеральной вате. Наибольшая урожайность томатов получена за семилетний период непрерывного использования субстрата из перлита — 31,3~ кг/м². Результаты биохимического анализа плодов томатов свидетельствуют, что использование в качестве субстратов отечественных материалов (аглопорит, керамзит, перлит) не ухудшает их качество по сравнению с импортной минеральной ватой.

Введение

Одним из важнейших приоритетов государственной аграрной политики республики является сохранение и развитие отрасли тепличного овощеводства, превращение ее в высокотехнологичное производство путем проведения мероприятий научно-технического, организационно-экономического, финансового и технологического плана [1].

Решение поставленных задач в Республике Беларусь достигается постепенным переходом, начиная с - 1996г., на современные технологии возделывания овощей в малообъемной культуре. По статистическим данным, более 86% из общей площади теплиц переведено на малообъемную технологию возделывания овощей. Внедрение данной технологии снижает затраты энергии на 30-40% при одновременном увеличении урожайности в 2-3 раза [2,3].

Известно, что эффективность производства овощей в условиях защищенного грунта зависит не только от правильно выбранной технологи, но и от составляющих элементов. Основным элементом малообъемной технологии, определяющим формирование урожайности овощей, является корнеобитаемая среда (субстрат). В основном в качестве субстратов в тепличных комбинатах республики используется импортная минеральная вата, закупаемая за валютные средства.

Для реализации государственной программы по импортозамещению в Белорусском государственном аграрном техническом университете проводились научные исследования по изучению возможности замены минеральной ваты на субстраты отечественного производства (аглопорит, перлит, керамзит в чистом виде и керамзит модифицированный добавками глины) при возделывании томатов в условиях защищенного грунта.

Использование данных субстратов имеет ряд преимуществ: их стоимость в десятки раз ниже минеральной ваты, они легко доступны, не требуют валютных средств для приобретения, легко утилизируются, гигиеничны в работе, долговечны в использовании и позволяют получать урожайность не ниже, чем на минеральной вате [4].

Основная часть

Экспериментальная работа была проведена путем постановки производственных опытов с использованием оборудования голландской фирмы «Агротех-Дидам» на базе тепличных комбинатов КСУП «Брилево» Гомельской области (1999-2000гг.) и СПК «Озерицкий» Минской области (2000 -2004 гг.). Опыты проводились по общепринятым методикам для сооружений защищенного грунта [5].

Анализы растительных образцов и субстратов проводили по общепринятым методикам и по соответствующим ГОСТам. Статистическая обработка результатов исследований проводилась методом дисперсионного анализа [6].

Для получения высокой урожайности растений, выращиваемых на искусственных почвозаменителях в регулируемых условиях, необходимо знать особенности взаимодействия в системе корнеобитаемая среда — растение. В результате совокупной деятельности минеральных субстратов и растений при определенных условиях микроклимата происходят различные превращения в корнеобитаемой среде сходные с процессами выветривания и почвообразования в почве. Первоначально инертный субстрат с течением времени под влиянием выделений корневой системы и питательного раствора преобразуется в сложную систему, с характерными химическими, агрофизическими и биологическими свойствами.

Результаты исследований свидетельствуют, что в процессе многолетнего использования в минеральных субстратах происходят весьма существенные изменения химического состава (таблица 1).

Выявлено, что после пятилетнего использования валовое содержание оксидов кремния уменьшается в субстратах из керамзита и особенно перлита, где оно снижается на 16,7 %, в аглопорите не произошло существенных изменений этого показателя. Количество Al₂O₃ практически не изменяется в аглопорите и керамзите, а в перлите снижается почти на 4,5 %. Установлено снижение валового содержания оксидов железа во всех субстратах, что связано с постепенным разрушением структуры субстратов. Первоначально валовое содержание фосфора в субстратах из аглопорита и керамзита составляло 0,12 и 0,15 % соответственно, в перлите этот элемент отсутствовал вовсе. Через пять лет его величина возросла до 0,65 % в перлите, на 0,30 и 0,17 % его стало больше в субстратах из керамзита и аглопорита. Это объясняется тем, что поглощенные фосфаты могут усваиваться растениями и восстанавливаться до прежнего уровня.

Содержание валового калия в изучаемых субстратах убывает с течением времени. Так, в субстратах из аглопорита уменьшается с 2,74 до 1,68%, керамзита — с 4,89 до 3,80% и незначительно на 0,72% в перлите, что связано с разрушением кристаллической решетки минеральных соединений и перехода некоторого количества калия из необменного состояния в обменное. В процессе использования во всех без исключения корнеобитаемых средах увеличивается количество валового кальция и магния.

В корнеобитаемых средах отмечается накопление серы, что можно рассматривать как увеличение в них с течением времени органического вещества. Наибольшее количество серы получено в перлите -3,40 %. При этом, потери при прокаливании, отражающие долю органического вещества, значительно увеличиваются во всех субстратах. Их содержание оказалось наибольшим в субстрате из перлита -14,6 %, примерно одинаковое их количество было в аглопорите и керамзите -2,66 и 2,23 % соответственно.

Определены параметры изменения подвижных форм фосфора и калия в процессе использования минеральных субстратов. К концу пятого года эксплуатации больше всего

 P_2O_5 получено в перлите, первоначальное его содержание возросло более чем в 9 раз, практически в пять раз увеличивается его количество в аглопорите и керамзите. Содержание подвижного калия также постепенно возрастает, максимальное его количество через пять лет накапливается в перлите, затем керамзите и аглопорите.

Таблица 1 - Изменение валового химического состава в зависимости от сроков

эксплуатации минеральных субстратов, % от сухого вещества

эксплуатации минеральных субс Вариант опыта	S	A1 ₂ 0 ₃			Fe ₂ O ₃			
1	2000r.	2004r.	2000	Or.	2004г.	2000r		2004г.
1 .Минеральная вата	46,0	40,5	12,	4	12,7	9,54		5,14
2.Аглопорит	78,4	79,1	7,8	0	8,92	5,47		3,08
3. Керамзит (фр.3-5)	57,3	55,3	16,	9	18,4	10,5		8,05
4. Перлит	75,3	58,6	12,	,3	7,85	2,31		1,83
5. Керамзит (фр.5-10 мм)		55,5	-		19,5	-		8,82
6.Керамзит (фр.5-10 мм)+ 5% глины		53,8	-		19,5	-		8,30
HCP ₀₅	1,46	1,83	1,5	3	1,47	0,46		0,51
Вариант опыта	F	0_{2} 0_{5}		K		CaO		
-	2000r.	2004г.	200	0г.	2004г.	2000	7.	2004г.
1 .Минеральная вата	0,31	2,20	1,0)3	1,40	17,3		23,0
2.Аглопорит	0,12	0,29	2,7	74	1,68	1,64		1,73
3. Керамзит (фр.3-5)	0,15	0,45	4,8	39	3,80 5,86)	6,56
4. Перлит	н.о	0,65	4,8	38	4,16	1,14		4,97
Керамзит (фр.5-10 мм)	-	- 0,30		-		-		5,76
6.Керамзит (фр.5-10 мм)+ 5% глины	-	0,39			4,12	-		5,81
HCP ₀₅	0,03	0,07	0,0)8	0,19	0,51		0,14
Вариант опыта	MgO		Na ₂ O		TiO₂			
	2000г.	2004г.	200	0г.	2004r.	2000	Γ	2004г.
1 .Минеральная вата	8,82			15	1,84	1,97		1,43
2.Аглопорит	0,78	0,81	0,8	0,89 1,01		0,50		0,45
3. Керамзит (фр.3-5)	2,59	3,20	0,6	58	0,80	0,56		0,88
4. Перлит	0,60	0,60 1,69		,24 2,19		0,11		0,12
Керамзит (фр.5-10 мм)	-	3,09	-	•	0,66	_		0,93
6.Керамзит (фр.5-10 мм)+ 5% глины	1	3,46	-		0,72	<u> </u>		0,80
HCP ₀₅	0,17	0,09	0,0)6	0,04	0,08	3	0,06
Вариант опыта	SO ₃				Потери при прокаливании (п.п.п.)			
	2000r	2000r.		2004г.		:	2004r.	
1. Минеральная вата	H.O		1,62		H-O			H.O
2.Аглопорит	H.O		0,60		1,87		2,66	
3. Керамзит (фр.3-5)	H.O		0,26		0,18		2,23	
4. Перлит	н.о		3,40		1,53		14,6	
Керамзит (фр.5-10 мм)	-		0,57				0,72	
6.Керамзит (фр.5-10 мм)+ 5% глины	-		0,79		-			2,66
HCP _O	-		0,06		0,07			1,10

Агрофизические свойства корнеобитаемых сред косвенно влияют на питание растений путем изменения условий увлажнения и аэрации. Субстратам присуще невысокое содержание твердой фазы, которая по годам колеблется от 3,0-6,0 % в минеральной вате, до 29,0-33,9 в аглопорите, 16,0-21,3 в керамзите и от 7,0 до 11,5 % в перлите. Все субстраты характеризуются высокой пористостью, максимальная — 97,0 % у минеральной ваты и наименьшая — 68,1 % у аглопорита, что не всегда способствует достаточному обеспечению растений водой и растворенными в ней элементами питания.

В связи с этим, для улучшения гидрофизических свойств разработана композиционная модель субстрата из керамзита с добавлением глины. В модифицированном глиной керамзите больше накапливается элементов питания и органического вещества. Влагоемкость модифицированного керамзита увеличивается на 4,2 % по сравнению с таковой при использовании чистого керамзита фракции 5-10 мм, что благоприятно

отражается на питании томатов.

В результате проведенного микробиологического анализа различных субстратов, используемых продолжительное время для выращивания томатов методом малообъемной гидропоники, установлено, что наиболее интенсивно исследованная микрофлора развивается на керамзите с глиной, где общая биогенность составляет 10,7 млрд. КОЕ/г абс. сух. субстрата, что выше в 6,3 раза в сравнении с биогенностью керамзита мелкой фракции и почти на 3 порядка превышает биогенность керамзита крупной фракции. Наиболее многочисленны в составе их микробоценозов аммонифицирующие, усваивающие минеральный азот и олигонитрофильные микроорганизмы.

Биогенность перлита в 3,5 раза выше таковой аглопорита. Эти субстраты отличаются от керамзита и более высокой численностью микромицетного сообщества. Микробоценоз перлита наиболее насыщен споровыми формами аммонифицирующих бактерий и грибов, в сочетании с высокой численностью актиномицетов, среди которых чаще всего обнаруживаются фитотоксичные представители микробного сообщества.

Полученные данные микробиологического анализа различных минеральных субстратов, наряду с данными по изменению их химических и агрофизических свойств используются для характеристики процессов, происходящих в корнеобитаемых средах при их длительном сельскохозяйственном применении.

Средние урожайные данные за семь периодов вегетации томатов (таблица 2) свидетельствуют, что максимальная продуктивность растений отмечалось в варианте с использованием в качестве субстрата перлита -31,3 кг/м², что на 5,4 % больше по сравнению с контрольным вариантом. На 1,0 кг/м² меньше, чем на минеральной вате, получено плодов томатов за этот период, выращиваемых на аглопорите и керамзите.

Таблица 2 – Влияние длительного применения минеральных субстратов на

урожайность томатов

			Средняя урожайность						
Вариант опыта	ТК «Бр	ТК «Брилево»		ТК «Озерицкий»					Прибавка,
	1999r.	2000r.	2000г.	2001г.	2002г.	2003г.	2004r.	(1999- 2004гг.), кг/м²	кг/м ²
1. Минеральная вата (контроль)	34,8	24,1	30,5	23,4	32,1	34,3	29,0	29,7	-
2.Аглопорит	32,5	24,4	31,4	24,6	31,2	33,1	24,1	28,7	-1,0
 Керамзит (фр. 3-5 мм) 	31,9	24,3	32,9	23,6	30,7	32,9	24,4	28,7	-1,0
4. Перлит	32,8	24,3	35,8	25,9	33,5	34,6	32,5	31,3	+1,6
5. Керамзит (фр. 5-10 мм)	-		-	-	-	32,0	33,0	-	-
6. Керамзит + 5% глины (фр. 5-10)		-	-	-	-	_	35,0	-	-
HCP ₀₅	1,59	0,42	0,78	2,44	1,53	1,64	2,18	0,97	-

Урожайность томатов, при двухлетнем использовании чистого керамзита фракции 5-10 мм, приравнивалась к данным показателям на лучшем варианте — перлите, а на керамзите, модифицированном глиной, она превышала эту величину за 2004г. на 2,5 кг/м². Следовательно, добавление глины в субстрат из керамзита способствует созданию более благоприятных условий для корневой системы томата, что положительно отражается на величине урожайности.

Использование в качестве субстратов отечественных материалов (аглопорит, керамзит, перлит) по сравнению с импортной минеральной ватой не ухудшает качество плодов томатов (таблица 3).

Таблица 3 - Качество плодов томатов, выращенных на минеральных искусственных

субстратах (средние данные за 1999–2004 гг.)

Вариант	Сухое вещество, % Витамин С, мг %		Титруемая кислотность, %	Caxapa, %	Сахарокислотный индекс		
Минеральная вата	5,75	12,9	0,57	2,90	5,34		
Аглопорит	5,82	11,4	0,50	3,00	6,36		
Керамзит	6,10	11,2	0,55	3,01	5,57		
Перлит	5,90	11,5	0,61	3,03	5,36		
HCP ₀₅	0,33	0,26	0,07	0,24	0,73		

Анализ средних шестилетних данных показывает, что плоды томатов, выращенные в условиях защищенного грунта, несколько отличаются по качественным показателям, предъявляемым к грунтовым томатам. Следует отметить, что титруемая кислотность соответствует установленным нормам, содержание сахаров в плодах и сахарокислотный показатель выше при выращивании томатов на отечественных минеральных субстратах. Однако, во всех вариантах опыта содержание витамина С в плодах томатов было значительно ниже, что можно объяснить недостаточной освещенностью растений.

Результаты расчета экономической эффективности за пятилетний период выращивания томатов в условиях ТК «Озерицкий» на различных гранулированных минеральных субстратах свидетельствуют, что при использовании перлита годовой чистый доход равняется 38,7 тыс. дол. США/га, уровень рентабельности составляет 29,7 % и превышает вариант с минеральной ватой на 17,5 %. Использование непрерывно в течение 5 лет аглопорита и керамзита оказалось менее эффективно по сравнению с минеральной ватой, чистый доход уменьшается примерно на 2 тыс. дол. США/га. Более выгодным по сравнению с минеральной ватой является использование этих субстратов в течение 4-х лет, чистый доход выше на 2,8 (керамзит) и 3,5 (аглопорит) тыс. дол. США, рентабельность превышает контрольный вариант на 3,1-3,7 % соответственно.

Заключение

- 1. Установлено, что длительное применение минеральных субстратов в теплицах в качестве почвозаменителей вызывает значительные изменения их химического состава, агрофизических и биологических свойств, что влияет на условия питания растений и определяет срок их эксплуатации. В первоначально инертных субстратах за пятилетний период увеличивается содержание подвижных форм фосфора и калия, накапливается органическое вещество. Агрофизические свойства корнеобитаемых сред существенно влияют на режимы питания растений в результате изменения соотношений твердой, жидкой и газообразной фаз. Установлено, что процесс использования минеральных корнеобитаемых сред сопровождается образованием активного микробиологического комплекса, включающего бактерии, грибы и актиномицеты.
- 2. Использование в качестве субстратов отечественных материалов (аглопорит, керамзит, перлит) по сравнению с импортной минеральной ватой не приводит к снижению урожайности и ухудшению качества плодов томатов. Максимальная общая урожайность плодов томатов получена при использовании в качестве субстрата перлита 31,3 кг/м²,прибавка по сравнению с контролем (минеральная вата) составила 5,4%. Содержание сухого вещества, титрируемой кислотности, сахаров и витамина С в плодах незначительно изменяется в зависимости от используемых субстратов выращивания.
- 3. Впервые в Беларуси на основании многолетних системных исследований минеральных субстратов (минеральная вата, аглопорит, керамзит, перлит) установлена принципиальная возможность импортозамещения минеральной ваты на отечественные строительные материалы, используемые в качестве корнеобитаемых сред при возделывании

томатов по ресурсосберегающей малообъемной технологии. Анализ экономической эффективности выращивания томатов в регулируемых условиях теплиц на различных гранулированных минеральных субстратах позволяет заключить, что более выгодным оказалось непрерывное пятилетнее использование в качестве субстрата перлита, годовой чистый доход равняется 38,7 тыс. дол. США/га, рентабельность -29,7 %, что превышает вариант с минеральной ватой на 17,5 %. Субстраты из аглопорита и керамзита экономически выгодно применять в течение 4-х лет.

Литература

- 1. Рязанова, О.А. Ресурсосберегающие технологии производства овощей с гарантированным качеством / О.А. Рязанова // Достижения науки и техники АПК. 2002. № 3. С. 10-12.
- 2. Веремейчик, Л.А. Научные основы питания томатов на минеральных субстратах / Л.А. Веремейчик, Л.С. Герасимович. Минск : Акад. упр. при Президенте Респ. Беларусь, 2005. 232 с.
- 3. Герасимович, Л.С. Подбор искусственных сред для малообъемной технологии возделывания овощей в условиях защитного грунта / Л.С. Герасимович, Л.А. Веремейчик, А.В. Попов // Агропанорама. 2000. № 4. С. 4-6.
- 4. Веремейчик, Л.А. Тепличное овощеводство на минеральных субстратах из отечественных материалов / Л.А. Веремейчик // Белорусское сельское хозяйство. 2004. № 12. С. 15-16.
- 5. Ващенко, С.Ф. Методические рекомендации по проведению опытов с овощными культурами в сооружениях защищенного грунта / ВАСХНИЛ, Отд-ние растениеводства и селекции; сост. С.Ф. Ващенко, Т.А. Набатова. М., 1976. 108 с.
- 6. Доспехов, Б. А. Методика полевого опыта (с основами статистической обработки результатов исследований): учеб. для студентов высш. с.-х. учеб. заведений по агроном. специальностям / Б.А. Доспехов. М.: Агропромиздат, 1985. 351 с.

УДК 631.811.1: 633.1

ОПТИМИЗАЦИЯ АЗОТНОГО ПИТАНИЯ ЗЕРНОВЫХ КУЛЬТУР НА ДЕРНОВО-ПОДЗОЛИСТОЙ СВЯЗНОСУПЕСЧАНОЙ ПОЧВЕ

Дайнеко Т.М., Игнатчук О.А., Ненадовец С.П. (БГАТУ)

В работе проанализированы результаты исследований по влиянию возрастающих доз азота, внесенных в один прием, на урожайность зерна ярового ячменя и озимой ржи, возделываемых на дерново-подзолистой связносупесчаной почве. На основании урожайных данных и показателей структуры урожая, выявлено, что оптимальной дозой азота для ячменя сортов Гонар и Атаман является N_{60} , внесенная под предпосевную культивацию; для озимой ржи сорта Сяброу́ка — N_{90} , внесенная в подкормку в начале вегетации.

Введение

Дерново-подзолистые почвы, наиболее распространенные в Республике Беларусь, характеризуются сравнительно низким содержанием усвояемых (минеральных) форм азота. Поэтому величина урожая сельскохозяйственных культур, возделываемых на данных почвах, в первую очередь определяется обеспеченностью азотом и рациональным его использованием [1,2]. Нормальное азотное питание ускоряет рост растений, способствует повышению синтеза белковых веществ, что ведет к увеличению урожая и оказывает положительное действие на накопление белка в зерне [3]. В настоящее время, когда перед народным хозяйством республики поставлена проблема энерго- и ресурсосбережения, как никогда актуальна задача наиболее эффективного распределения ресурсов азотных удобрений в зависимости от почв, культуры, сорта.