С учетом внутрисменного простоя М-У в ожидании её загрузки фактическая сменная её производительность в га/ч составит

$$W_{\rm M-Y}^{\rm cm\,(\phi akt)} = W_{\rm M-Y} \Big(T_{\rm CM} - T_{\rm M-Y}^{\rm np\,(cm)} \Big). \tag{11}$$

Заключение

- 1. Разработанная применительно к перегрузочной схеме технологии внесения удобрений методика анализа функционирования ТТК на базе совмещенных циклограмм наличия удобрений в бункерах М-У и Т-П позволяет сформировать оптимальный состав ТТК, обеспечивающий максимальную производительность М-У при минимальных затратах на их обслуживание.
- 2. Продолжительность простоев M-У в ожидании их загрузки в наибольшей степени зависит от расстояния доставки удобрений на плече «склад хозяйства – поле».
- 3. Изложенная методика может быть использована при формировании рационального ТТК для обслуживания зерновых и зернотуковых сеялок.

Литература

- 1. Степук, Л.Я, Барабанов, В.В., Крот, Д.А. О повышении сменной производительности навесных машин для внесения минеральных удобрений // Агропанорама. -2007. -№ 4. C. 36-39.
- 2. Догановский, М.Г. Машины для внесения удобрений / М.Г. Догановский, Е.В. Козловский. М.: Машиностроение, 1972. 272 с.
- 3. Рычков, В.А., Васильев, С.С. Организация рационального транспортно-технологического обеспечения работы машин-удобрителей // Техника в сельском хозяйстве. -2013. № 1. С. 18-20.

УДК 631.312.021

СОВЕРШЕНСТВОВАНИЕ КОНСТРУКЦИИ СЕЛЬСКОХОЗЯЙСТВЕННОГО ОРУДИЯ ДЛЯ ОСНОВНОЙ ОБРАБОТКИ ПОЧВЫ

В.А. Агейчик, к.т.н., доцент; Н.Н. Романюк, к.т.н., доцент; К.В.Сашко, к.т.н., доцент; Б.М. Астрахан, к.т.н., доцент; П.В. Клавсуть

УО «Белорусский государственный аграрный технический университет», г. Минск, Республика Беларусь

В статье предложена оригинальная конструкция корпуса плуга, использование которого позволит уменьшить энергоёмкость процесса вспашки и улучшить технологический процесс крошения почвенного пласта.

Введение

Определяющее значение в системе механической обработки почв принадлежит основной обработке. Именно основная обработка в наибольшей степени определяет характер протекания физико-биологических процессов в почве.

От качества выполнения технологического процесса основной обработки почвы во многом зависят физико-биологические и химические процессы, протекающие в пахотном и подпахотном горизонтах, количество последующих проходов орудий по полю, качество размещения семян в почве и т.д., что в конечном итоге сказывается на урожайности возделываемых культур. Однако при вспашке почвы плугами общего назначения даже в период ее физической спелости в среднем только 20% поля соответствует агротехническим требованиям по степени крошения. За счет того, что в процессе вспашки преобладающим видом деформации пласта является сжатие, после прохода орудия на поле образуются комки, плотность которых в некоторой степени даже превышает объемный вес почвы до обработки.

Решение данных проблем требует детального изучения процесса воздействия рабочих органов на почву, раскрытия внутренних процессов деформации, перемещения почвенных элементов и исследования влияния конструктивных параметров на качество обработки. При этом необходимо иметь в виду, что вспашка является самой энергоемкой операцией в растениеводстве, на ее осуществление приходится около 40 % энергозатрат по подготовке почвы [1].

Целью данных исследований является уменьшение энергоёмкости процесса вспашки и улучшение технологического процесса крошения почвенного пласта.

Основная часть

Проведенный патентный поиск показал, что известен корпус плуга [2], включающий стойку, лемех, полевую доску, укороченную часть отвала, дисковый вращающийся отвал, установленный на оси и выполненный из отдельных сегментных элементов из пружинной стали, скрепленных в диск при помощи фланца. Фланец жестко соединен с осью, которая установлена в подшипниках опоры. Опора прикреплена через фланец с продолговатыми отверстиями под крепежные болты, а кронштейн - к стойке корпуса. На упругих сегментных элементах с рабочей стороны закреплены зубья, расположенные на различном удалении от центра диска. Регулируемый упор состоит из гайки, цанги, которая одним концом прикреплена к оси, а другим - упирается в упругие элементы.

Известный корпус плуга обладает недостатком - не обеспечивается достаточное качество вспашки.

Известен корпус плуга [3], содержащий стойку, полевую доску, лемех, укороченный отвал со свободно закрепленным на оси диском с закреплёнными на его обращённой к почвенному пласту поверхности рыхлительными элементами, причём рыхлительные элементы диска выполнены в виде прямоугольных пластин, заостренных со стороны направления обрабатываемого пласта почвы, расположенных под углом 0...45° относительно линии движения корпуса плуга.

Недостатком такого корпуса плуга является быстрое забивание и залипание поверхности диска почвой и растительными остатками, особенно на тяжёлых почвах повышенной влажности, что нарушает технологический процесс крошения почвенного пласта и создаёт значительное сопротивление со стороны почвы перемещению плуга.

В Белорусском государственном аграрном техническом университете разработан оригинальный корпус плуга [4].

На рисунке 1, a показан корпус плуга, вид сверху; на рисунке 1, δ – вид A; на рисунке 1, s – сечение B-B.

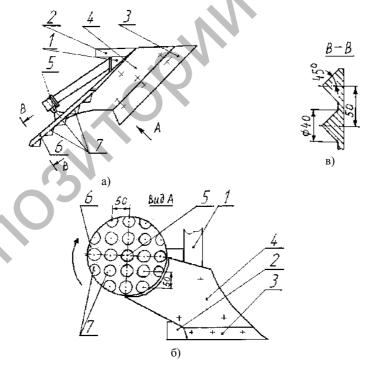


Рисунок 1 – Корпус плуга

Корпус плуга работает следующим образом. Пласт почвы, поднимаясь по укороченной части отвала 4, поступает на диск 6, где взаимодействует с рыхлительными элементами 7. Ось 5 диска располагается выше центра тяжести пласта почвы и за счет сил сцепления движущегося пласта с диском 6 и рыхлительных элементов 7 происходит вращение диска 6 в направлении движения почвы (по часовой стрелке). При взаимодействии рыхлительных элементов 7 с обрабатываемым происходит дополнительное его крошение и частичное измельчение растительных остатков в почве. При этом за счёт расположения точек пересечения с поверхностью диска осей симметрии всех круговых конусов в вершинах, примыкающих друг к другу квадратов со сторонами, равными 50 мм обеспечивается необходимое преобладание в обрабатываемом слое фракций размером до 50 мм [5]. Так как углы трения различных типов почвы и расположенных в ней растительных остатков по стали не превышают 42^0 [6], то в соответствии с законом Кулона продвижение их по опорным поверхностям возможно, если острый угол этих поверхностей с направлением перемещения меньше 46⁰, то есть результирующая действующих на почвенную частицу сил не попадает в конус трения её об опорную поверхность, что исключает при принятом угле между образующей каждого прямого кругового конуса и его осью симметрии равном 45⁰ забивание и залипание поверхности диска 6 почвой и растительными остатками.

Выполнение оснований рыхлительных элементов 7 в виде кругов диаметром 40 мм обеспечивает между поверхностями рыхлительных элементов зазор, исключающий заклинивание и залипание между ними частиц почвы.

Заключение

Предложена оригинальная конструкция корпуса плуга, использование которого позволит уменьшить энергоёмкость процесса вспашки и улучшить технологический процесс крошения почвенного пласта.

Литература

- 1. Фархутдинов, И.М. Совершенствование лемешно-отвальной поверхности корпуса плуга на основе моделирования технологического процесса вспашки : автореф. дис... канд. техн. наук: 05.20.01 / И.М. Фархутдинов ; ФГБОУ ВПО «Башкирский государственный аграрный университет». Уфа : 2012. 19с.
 - 2. Авторское свидетельство СССР №751339, кл. А01В 5/04, 1980.
 - 3. Патент на изобретение РФ №2412570 С1, МПК А 01 В 15/00, 2006.

- 4. Корпус плуга : патент 17919 С1 Респ. Беларусь, МПК А 01В 7/00 / Н.Н. Романюк, В.А. Агейчик, И.Т.Сеген ; заявитель Белорус. гос. аграр. техн. ун-т.— № а 20110998 ; заявл. 18.07.2011 ; опубл. 28.02.2014 // Афіцыйны бюл. / Нац. цэнтр інтэлектуал. уласнасці.—2014.—№ 1.— С.48.
- 5. Клочков В.А., Чайчиц Н.В., Буяшов В.П. Сельскохозяйственные машины / В.А. Клочков, Н.В. Чайчиц, В.П. Буяшов. Минск : Ураджай, 1997.-C.12...13.
- 6. Сабликов М.В. Сельскохозяйственные машины. Основы теории и технологического расчёта / М.В. Сабликов. М.: Колос, 1968. С.9.

Abstract

The article proposes an original design of the plow body, the use of which will reduce energy consumption and improve the process of plowing process crumbling soil formation.

УДК 631.353:631.171

К ВОПРОСУ ИНТЕНСИФИКАЦИИ ПРОВЯЛИВАНИЯ СКОШЕННЫХ ТРАВ В ПОЛЕ

И.В. Кокунова, к.т.н., доцент, О.С. Титенкова, аспирант

ФГБОУ ВПО «Великолукская государственная сельскохозяйственная академия», г. Великие Луки, Российская Федерация

Рассмотрено влияние природно-климатических факторов на эффективность провяливания скошенных трав в поле и способы интенсификации влагоотдачи растительной массы. Предложены технические решения для совершенствования кормоуборочной техники с целью повышения качества производимых растительных кормов.

Введение

Современные технологии заготовки кормов из трав в виде сена и сенажа требуют снижения влажности скошенных растений в полевых условиях с 56-85% до 18-20 и 45-55% соответственно. Чем быстрее достигается эта влажность, тем больше вероятность исключить попадание скошенной растительной массы под атмосферные осадки, которые приводят к резкому снижению качественных показателей заготавливаемого корма.

Основная часть

В условиях Северо-Запада Российской Федерации существенным отрицательным фактором, влияющим на своевременное и качественное выполнение