

Рисунок 8. Зависимость глубины следа системы колес от отношения их ширины Вм к ширине предшествующего следа Вт

- смещение шин от предшествующего следа нерационально, т.к. наблюдается увеличение силы сопротивления качению и общей ширины следа при несущественном уменьшении его глубины;
- ширина шин агрегатируемых машин может быть больше, чем у шин тракторов. Предельной является ширина шин, обеспечивающих работу агрегатов без увеличения глубины следов тракторов.

– при рациональном изменении размеров шин, улучшении их деформационных свойств, правильном согласовании колеи и ширины следов трактора и машины можно достигнуть существенного повышения грузоподъемности современных машин либо снижения тягового класса агрегатируемых тракторов благодаря уменьшению сил сопротивления качению машин в полевых условиях при одновременном снижении деформаций почвы.

ЛИТЕРАТУРА

- 1. Орда, А.Н. Сопротивление почв / А.Н. Орда. Мн.: БГАТУ, 2002. 94 с.
- 3. Кацыгин, В.В. Основы теории выбора оптимальных параметров сельскохозяйственных машин и орудий / В.В. Кацыгин // Вопросы сельскохозяйственной механики. Мн.: Урожай, 1964. Т. 13. С. 5-147.
- 4. Гедроить, Г.И. Сопротивление качению ведомых пневматических колес / Г.И. Гедроить //Агропанорама, 2010. N = 1. C. 26-30.

УДК 629.1.07. 629.114.2

ПОСТУПИЛА В РЕДАКЦИЮ 13.11.2014

СОВЕРШЕНСТВОВАНИЕ СРЕДСТВ ИЗМЕРЕНИЙ И МЕТОДОВ, ИСПОЛЬЗУЕМЫХ ПРИ ИСПЫТАНИЯХ ТОРМОЗНЫХ СИСТЕМ ТРАКТОРОВ «БЕЛАРУС»

И.А. Колтович, заместитель главного конструктора (ОАО «Минский тракторный завод»)

Аннотация

В статье рассматриваются методы оценки эффективности тормозной системы, как в составе трактора, так и на испытательном стенде. Приводятся варианты измерительного оборудования, используемые при испытаниях.

In article methods of an estimation of efficiency of brake system both as a part of a tractor, and at the test bed are considered. The variants of the measuring equipment used at tests are resulted.

Введение

Проверка работоспособности и эффективности работы тормозной системы является одним из основных видов испытаний, относящихся к оценке показателей безопасной работы трактора.

Оценка работоспособности и эффективности тормозной системы начинается уже на стадии проектирования трактора, при этом проводится оценка, как в целом системы, так и отдельных ее составляющих (например, привод, фрикционные свойства применяемых тормозных материалов, теплонагруженность

корпусных элементов и т. д.). Отработка конструкции тормозной системы может проводиться, как в составе трактора, так и на различных специальных испытательных стендах.

Как правило, испытания тормозной системы в составе трактора проводятся с использованием стандартных методик, приведенных в Технических Нормативных и Правовых Актах (ТНПА). К таким методикам, где приведены не только методы, но и оцениваемые показатели при испытаниях, можно отнести ГОСТ 12.2.019-2005, ГОСТ 12.002-91, ГОСТ 12.002.3-91 [1],

которые действуют на территории стран СНГ, а также Правило №13 ЕЭК ООН [2] и Директиву ЕС 74/432 [3], действующие в странах Евросоюза. При проведении поисковых или исследовательских испытаний на стендах, в зависимости от постановки задач на испытания, могут применяться, как стандартные методики и измерительное оборудование, так и специально разработанные.

Основная часть

Испытания тормозной системы в составе трактора

Тормозная система трактора состоит из следующих основных частей:

- основной рабочий тормоз;
- стояночный и запасной тормоз;
- управление.

Испытания тормозной системы в составе трактора проводятся как на максимально загруженном тракторе (до максимальной разрешенной массы, регламентированной заводом-изготовителем), так и на разгруженном до его эксплуатационной массы. В обоих случаях соблюдается предписанное ее распределение по осям трактора.

Тормозная система должна приводить трактор в состояние покоя от максимально замеренной скорости его движения при соблюдении следующих условий:

- без блокирования приводных колес (отсутствие «юза»);
- без отклонения от прямолинейного движения в процессе торможения трактора (боковой занос или увод);
- без проскальзывания и вертикальных колебаний ведущих колес.

К оцениваемым параметрам основной тормозной системы трактора относятся следующие измеренные показатели:

- усилие на органах управления;
- тормозной (остановочный) путь трактора.

В общем случае тормозная эффективность должна достигаться при усилии на органах управления, не превышающем 600 H.

Требуемый тормозной путь трактора рассчитывается по следующей формуле:

$$S \le 0.15V + \frac{V^2}{116},\tag{1}$$

где V – максимальная скорость, км\ч;

S – максимальный тормозной путь, м.

Стояночно-запасная тормозная система должна обеспечивать удержание нагруженного до максимальной разрешенной массы трактора на уклоне 18 %, при этом усилие на органах управления не должно превышать 400 H.

Использование при испытаниях специального оборудования

Для проверки работоспособности и эффективности тормозов в составе трактора предлагается следующая измерительная система, позволяющая проводить не только измерение контролируемых парамет-

ров, но и комплексный анализ результатов испытаний для проведения отработки конструкции тормозов.

Общая схема измерительной системы, установленной на тракторе, приведена на рис. 1. Для контроля процесса испытаний, вывода основных параметров и экспресс оценки опыта данная система имеет монитор 1, устанавливаемый в кабине непосредственно перед глазами испытателя.

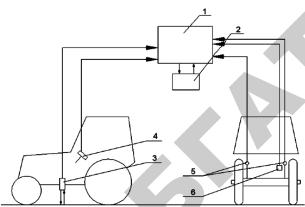


Рисунок 1. Схема установки измерительного оборудования на тракторе: 1 — монитор; 2 — многоканальный накопительный блок; 3 — измеритель пройденного (тормозного) пути; 4 — измеритель усилия на тормозной педали; 5 — датчик измерения частоты вращения правого и левого колес; 6 — датчик давления в управляющей магистрали привода тормозов прицепа

При проведении испытаний измеряются следующие параметры [4]:

- тормозной путь, м.;
- скорость движения трактора, км/ч.;
- усилие на органах управления (педалях тормозов), H;
- частота вращения обоих ведущих колес трактора, мин $^{-1}$;
- продолжительность опыта (отсчет времени ведется с момента нажатия на тормозные педали и до полной остановки трактора), с;
- давление воздуха в магистрали управления привода тормозов прицепа, МПа.

Одновременно с замером вышеуказанных параметров в процессе опыта рассчитывается замедление трактора как производная скорости движения трактора с заданной дискретностью для опыта [5]. Вся информация по результатам в процессе испытаний накапливается в многоканальном блоке 2 (рис. 1) и в дальнейшем может переноситься для анализа и окончательного оформления результатов испытаний на персональный компьютер.

Во время испытаний, после каждого опыта, методом опроса на мониторе можно получать подробную информацию о любом параметре для экспресс оценки эффективности тормозной системы. Непосредственно во время проведения опыта испытатель контролирует на мониторе скорость перед началом торможения трактора и требуемое усилие на тормозных педалях.

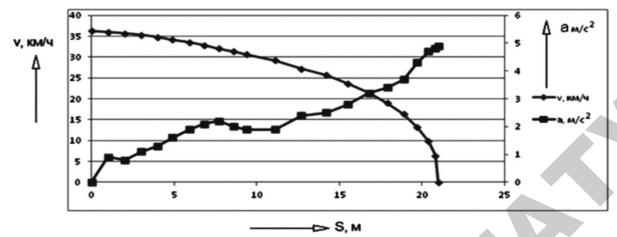


Рисунок 2. Графики зависимостей скорости (**V**) и замедления (**a**) как функции от тормозного пути трактора (**S**)

Рисунок 3. Графики зависимостей усилия на тормозных педалях (**F**) и давления воздуха в магистрали управления (**P**)как функции от времени длительности опыта (**t**)

Рассмотрим работу измерительной системы непосредственно по данным проведения испытаний основной тормозной системы трактора.

На рис. 2 приведены зависимости скоростей v и замедления a в функции от тормозного пути S. На рис. 3 — усилия на тормозных педалях F и давление воздуха в магистрали управления P в функции от времени длительности опыта t.

Анализируя приведенные выше результаты испытаний, можно сделать следующие выводы:

- максимальная скорость движения трактора перед началом торможения составила 36,3 км/ч.;
- при усилии на органах управления (педалях) основной тормозной системы, поддерживаемого в пределах 421...479H, тормозной путь трактора достиг своего максимального значения и составил 21 м. Контроль и поддержание заданного значения усилия в течение всего времени опыта испытатель осуществляет непосредственно с рабочего места по монитору;
- давление воздуха в магистрали управления привода тормозов прицепа достигает минимально необходимого своего значения, при котором прицеп заторма-

живается уже через 0,2 с после начала торможения и не оказывает влияния на основную тормозную систему трактора (рис. 3, t1<t2). Таким образом, одновременно с испытанием основной тормозной системы проводится и проверка работоспособности привода тормозов прицепа (регулировка привода тормозного крана и управления основной тормозной системы трактора;

– непосредственно во время опыта проверяется соблюдение требований, предъявляемых к работе основной тормозной системы при проведении измерений: отсутствие блокирования приводных колес («юз») и отсутствие отклонения от прямолинейного движения (боковой занос или увод трактора).

Это возможно контролировать непосредственно из кабины с рабочего места испытателя по информации на мониторе. Отсутствие разности угловых скоростей обоих ведущих колес в конце опыта указывает на то, что отклонения от прямолинейного трактора в процессе торможения нет.

При полностью остановленных ведущих колесах замедление трактора достигает своего максимального значения и не растет дальше, при этом тормозной

путь достиг своего максимального конечного значение (рис. 2). Данный факт свидетельствует также об отсутствии блокирования ведущих колес трактора.

Например, разница в измеренном тормозном пути с момента достижения максимального значения замедления, при условии неподвижности ведущих колес, до момента полной остановки трактора, если такое имеет место, квалифицируется как «юз». В этом случае данный опыт выбраковывается.

Таким образом, предлагаемое измерительное оборудование для испытаний основной тормозной системы в составе трактора позволяет оперативно провести с места оператора ее комплексную оценку непосредственно в процессе проведения испытаний:

- 1. Обеспечивает оперативный контроль и поддержание требуемого значения усилия на тормозных педалях испытателем в течение опыта.
- 2. Обеспечивает оценку и контроль соблюдения условий проведения испытаний, предписанных стандартными методиками ТНПА отсутствие «юза», блокирования ведущих колес, проскальзывания и вертикальных колебаний ведущих колес в течение опыта испытателем, непосредственно с рабочего места. При этом не требуется наличие дополнительного наблюдателя, находящегося вне трактора.
- 3. Позволяет одновременно проводить оценку работоспособности привода тормозов прицепа с испытаниями основной тормозной системы трактора.

Испытание элементов тормозной системы трактора на стенде

Стенд предназначен для проведения функциональных (проверка тормоза на эффективность торможения, оценка износа фрикционного материала накладок тормозных дисков по результатам кратковременных испытаний) и сравнительных ресурсных (определение долговечности материала фрикционных накладок тормозных дисков и элементов тормоза в целом) испытаний всех типов тормозов («сухих» и «мокрых»), применяемых на тракторах «Беларус», с отображением контролируемых параметров на программируемом мониторе автоматизированного рабочего места испытателя [6].

Общий вид стенда (механическая часть) приведен на рисунке 4.

Механическая часть стенда довольно проста, как видно на рисунке 1. Инерционная маховая масса имитирует вес трактора и подбирается в зависимости от типа трактора. Объект испытаний легко монтируется на стенд. Имеются незначительные отличия при установке механизма тормоза на стенд в зависимости

от его типа («мокрый» или «сухой»).

Стенд имеет 3 режима управления:

- «наладка» проводится регулировка механизма тормоза, опробывание всех систем работы стенда и регулировка хода педали;
- «автомат-параметры» в данном режиме стенд работает без вмешательства испытателя по заданному циклу;
- «автомат-ресурс» в данном режиме стенд работает без вмешательства испытателя по циклу работы «автомат-параметры».

Все измеряемые параметры во время проведения испытаний можно подразделить на две группы — параметры, обеспечивающие работу стенда, и параметры работы самого объекта испытаний — механизма тормоза. Измеряемые параметры приведены на рисунке 5.

Для основных измеряемых параметров, обеспечивающих как безопасную работу стенда, так и параметров, влияющих на работоспособность объекта испытаний (механизма тормоза), вводятся и контролируются дополнительно их значения, указывающие на отклонения от нормального режима работы. При их превышении происходит аварийное отключение стенда во избежание поломки составляющих стенда или объекта испытаний (отмечены на рис. 5 звездочкой и выделены шрифтом):

- давление полости гидроцилиндра стенда;
- давление в гидросистеме управления цилиндром;
- давление в системе полива механизма тормоза (в случае испытания «мокрого» типа тормоза);
- давление в контуре гидростатического управления тормозом;
 - ход педали;
- температура масла в кожухе тормоза (в случае испытания «мокрого» типа тормоза);
- температура на кожухе тормоза (в случае испытания «сухого» типа тормоза).

Рассмотрим работу стенда на примере одного цикла испытаний. Один цикл испытаний включает в себя следующие виды работ стенда:

- 1. Включение гидростанции стенда.
- 2. Плавный пуск электропривода и разгон до установления необходимых оборотов в зависимости

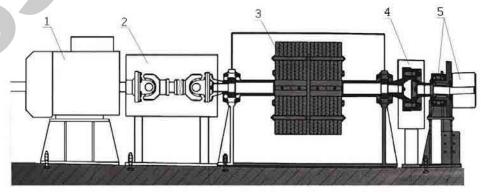


Рисунок 4. Общий вид стенда: 1 — привод стенда; 2 — карданная передача; 3 — инерционная маховая масса; 4 — соединительный элемент; 5 — объект испытаний

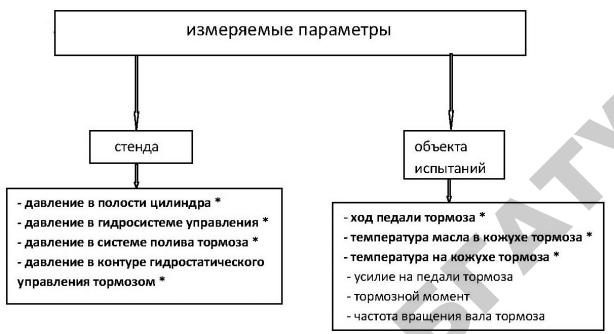


Рисунок 5. Перечень измеряемых параметров

от типа испытуемого объекта – механизма тормоза.

- 3. Отключение электропривода и включение тормозного цилиндра с заданным усилием при торможении. Конец торможения фиксируется по отсутствию сигналов с датчика частоты вращения. В процессе торможения происходит запись всех параметров до полной остановки вала механизма тормоза.
 - 4. Отключение тормозного цилиндра.
 - 5. Отключение гидростанции.
 - 6. Пауза.
 - 7. Начало нового цикла.

После записи параметров процесса торможения производится подсчет тормозного пути по формуле:

$$S \le 2\pi R_{\kappa} \frac{n}{k},\tag{2}$$

где S — тормозной путь, м;

 $\pi - 3{,}1416;$

 R_{κ} – кинематический радиус качения колеса, м (задается программно);

n — число оборотов вала тормоза до полной его остановки, мин⁻¹;

k — передаточное отношение конечной передачи (задается программно).

В приведенном варианте стенда особую роль играет автоматизация его работы. Для данной конструкции стенда разработано автоматизированное рабочее место испытателя, которое обеспечивает следующие функции:

- управление исполнительными элементами стенда;
- прием и обработка данных о состоянии составляющих стенда во время работы;

– отображение на пульте управления значения контролируемых параметров, состояние составляющих стенда, задание предельных и аварийных значений работы стенда и контролируемых параметров работы механизма тормоза во время испытаний, причины аварийных остановок стенда.

Основные результаты испытаний можно отслеживать и анализировать как в виде таблиц, так и в виде различных графиков: n = f(t), Mt = f(t), P = f(t). Примеры различных зависимостей по результатам испытаний эффективности механизма тормоза приведены на рисунках 6, 7.

Кроме проверки эффективности на стенде возможно проведение ускоренных ресурсных испытаний механизма тормоза с определением, например, интенсивности износа фрикционного материала накладок, а также проводить различного рода исследовательские

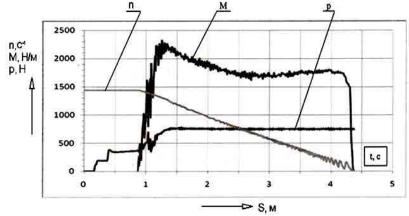


Рисунок 6. Графики процесса включения тормоза при проверке его эффективности: n – обороты вала механизма тормоза; M – тормозной момент; P – усилие на тормозном цилиндре

испытания, применяя при этом специальные методики. На рис. 8 приведен пример в виде графика исследования теплонагруженности корпусных элементов механизма тормоза.

Автоматизированный контроль, управление процессом испытаний и составление соответствующих методик испытаний являются одними из основных

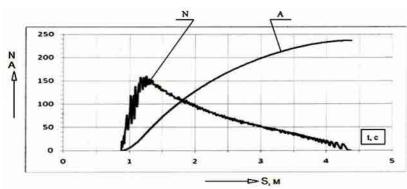


Рисунок 7. Графики изменения цикловой работы трения и мощности тормоза: N – цикловая мощность; A – работа трения

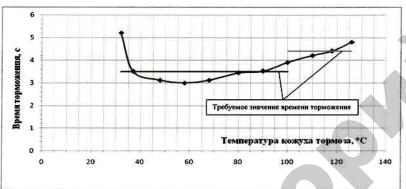


Рисунок 8. График изменения температуры корпуса механизма тормоза

приоритетов при проектировании и создании различного вида стендового оборудования. Важно заранее определить необходимые контролируемые параметры, как объекта испытаний, так и работы стенда, задать им оптимальные допускаемые и аварийные отклонения, позволяющие в дальнейшем управлять процессом испытаний в автоматическом режиме и предотвращать поломку оригинального объекта испытаний.

Описанные выше методы испытаний тормозной системы, как в составе трактора, так и с применением стендового оборудования широко применяются на различных этапах конструирования трактора и отработки его конструкции при проведении различного вида эксплуатационных испытаний.

Выводы

1. Измерительное оборудование для испытаний тормозной системы в составе трактора позволяет оперативно, непосредственно с места испытателя, проводить ее комплексную оценку в про-

цессе испытаний и вносить необходимые корректирующие действия:

- обеспечивает оперативный контроль и поддержание требуемого значения усилия на тормозных педалях испытателем в течение опыта;
- обеспечивает оценку и контроль соблюдения условий проведения испытаний, предписанных в

стандартных методиках ТНПА (отсутствие «юза», блокирования ведущих колес, проскальзывания и вертикальных колебаний ведущих колес в течение опыта испытателем непосредственно с рабочего места). При этом не требуется наличие дополнительного наблюдателя, находящегося вне трактора;

- позволяет проводить оценку работоспособности привода тормозов прицепа одновременно с испытаниями основной тормозной системы трактора.
- 2. Применение автоматизированного контроля и управления процессом испытаний позволяет заранее определить необходимые контролируемые параметры, как объекта испытаний, так и безопасной работы стенда. Задание выбранным параметрам их оптимальных, допускаемых и аварийных отклонений позволяет управлять процессом испытаний в автоматическом режиме, вносить корректирующие действия в отработку конструкции и предотвращать поломку оригинального объекта испытаний.

ЛИТЕРАТУРА

- 1. Директива EC 74/432. Тормозные системы сельскохозяйственных и лесных тракторов.
- 2. Тракторы и машины самоходные сельскохозяйственные. Общие требования безопасности: ГОСТ 12.2.019-2005. Введ. 01.09.06. Минск: Комитет по стандартизации, метрологии и сертификации при Совете Министров Республики Беларусь. 14 с.
- 3. Техника сельскохозяйственная. Методы оценки безопасносности: ГОСТ 12.002-91. Введ. 01.07.92. Государственной комиссией Совета Министров СССР по продовольствию и закупкам.
- 4. Гуськов, В.В. Оптимальные параметры сельскохозяйственных тракторов / В.В. Гуськов. М.: Машиностроение, 1966 192 с.
- 5. Колобов, Г.Г. Тяговые характеристики тракторов / Г.Г. Колобов, А.П. Парфенов. М.: Машиностроение, 1972-191 с.
- 6. Тракторы. Теория / В.В. Гуськов [и др.]; под общ. ред. В.В. Гуськова. М.: Машиностроение, 1988 376 с.