4	A	В	С	D	Е	F	G
1	Пр		изводство в тоннах		Расчёты		
2	Месяц	2014	2015	2016	Σ за 3 года	Средняя	Индекс Сезонност
3	Январь	10455	9946	9064	29465	9821,7	104,5
4	Февраль	9502	8602	8366	26470	8823,3	93,9
5	Март	10570	9381	8963	28914	9638,0	102,6
6	Апрель	9701	9741	9633	29075	9691,7	103,1
7	Май	7745	8884	9427	26056	8685,3	92,4
8	Июнь	8062	8497	8080	24639	8213,0	87,4
9	Июль	8409	9579	7534	25522	8507,3	90,5
10	Август	10540	9698	8607	28845	9615,0	102,3
11	Сентябрь	10488	9644	8286	28418	9472,7	100,8
12	Октябрь	10775	10395	9092	30262	10087,3	107,4
13	Ноябрь	10696	9740	9724	30160	10053,3	107,0
14	Декабрь	11229	10710	8501	30440	10146,7	108,0
15	Σ	120186	116832	107293	338266	9396,3	100,0

Рисунок 2 – Результаты расчёта индекса сезонности

Полученные результаты (рис. 2) демонстрируют, что сезонные колебания производства комбикормов характеризуются понижением в летний период. А в зимние месяцы мы можем наблюдать увеличение объема производства данной продукции. Рассчитанные, таким образом, средние индексы сезонности следует положить в основу модели, по которой можно осуществлять планирование производства на следующие годы.

УДК 339 18:005

А. Горошко, А. Саватеев

(Республика Беларусь)

Научный руководитель: Е.И. Подашевская, ст. преподаватель Белорусский государственный аграрный технический университет

ЛОГИСТИЧЕСКОЕ РЕШЕНИЕ ОРГАНИЗАЦИИ РАБОТЫ ОБСЛУЖИВАЮЩЕГО ПЕРСОНАЛА РЕСТОРАНА

Для определения оптимальной загрузки графика официантов с целью повышения качества обслуживания при минимизации численности официантов использовать методы экономико-математического моделирования.

Важно правильно распределение людей по графику работы предприятия. Крайне важно, чтобы не было простоев, так как это лишние деньги, что тратит предприятие на заработную плату.

В настоящее время в ресторане работают как на полную ставку, так и на пол ставки, продолжительность смены — 9 часов. В модели анализируется возможность одновременного использования 4-х часовых рабочих смен. В частности, это даст возможность привлекать для работы в ресторане студентов без нарушения ритма их учебы.

Возможные полные смены (9 ч., включая 1 ч. на обед), которые разбиваются на периоды: 10-19, 11-20, 12-21, 13-22. Возможные неполные смены (4 ч., обед за пределами смены): 10-14, 11-15, 12-16, 13-17, 14-18, 15-19, 16-20, 17-21, 18-22.

На каждый период менеджер, исходя из опыта, указывает требуемое количество официантов.

В данном примере с 10-12 нам требуется 3 официанта, с 13-15 —15, с 15-18 — 12, с 18-20 —18, с 20-22 —4.

Введем вспомогательные переменные: число работающих полный день (x14) и 4 часа (x15).

На полный день работают выходящие на смену x1-x4. На неполную смену работают x5-x13.

F G H 7 x6|x7|x8|x9|x10|x11|x12|x13 Сумма произведений x2 x3 x4 x5 Неполная Полная 10-14 3-17 13-22 9 10 0 11 0 1 1 12 1 1 1 1 -1 0 0 = 1 >= 3 10-12 13 1 1 1 1 1 0 >= 15 13-15 14 15 1 1 1 1 0 >= 12 15-18 1 1 1 1 1 1 0 >= 18 18-20 1 20-22 1 0 >= 0.5 Min

На рисунке 1 показана подготовленная матрица.

Рисунок 1 - График рабочего времени

Вызываем *Поиск решения*. Целевая функция, согласно примеру, находится в ячейке P18, следовательно, в окне «Оптимизировать целевую функцию» указываем эту ячейку. Требуется минимум смен, поэтому выбирается «Минимум». Ячейки переменных — это ячейки A10...O10. Проанализируем ограничения задачи. Первое требование — целочисленность

переменных: \$A\$10:\$M\$10=целое. Второе требование — сумма смен x1-x4 должно быть равно x14, а сумма x5-x13 = x15: \$P\$11:\$P\$12=\$R\$11:\$R\$12. Третье требование — на каждой смене количество официантов должно быть не менее указанного менеджером: \$P\$13:\$P\$17=\$R\$13:\$R\$14.

После выполнения поиска решения получим следующие результаты для заданной численности официантов (рис.2).

Требуется 21 человек, работающий на полную ставку и 8 человек, работающих 4 часа, что на 1 человека меньше, чем в настоящий момент работало на объекте исследования.

A B C D E F G H I J K L M N O P Q R o x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15	S
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 (\$\frac{1}{2}\$)	
8 X1 X2 X3 X4 X3 X0 X7 X6 X3 X10 X11 X12 X13 X14 X13 \$\frac{1}{8}\$	
8 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 10-14 4 13 12 12 12 12 12 12 12 12 12 12 12 12 12	
10 0 0 15 3 0 0 0 0 0 0 15 6	
11 1 1 1 1 0 = 0	
12	
13 1 1 3 >= 3 10	0-12
14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3-15
15 1 1 1 1 1 1 1 1 1 15 >= 12 15	5-18
16 1 1 1 1 1 1 18 >= 18 18	8-20
17 1 1 15 >= 4 20	0-22
18 1 0,5 18 Min	

Рисунок 2 – Результаты решения задачи

Использование составленной программы и мониторинг требуемого количества официантов, работающих на сменах, позволит обеспечить повышение качества обслуживания.

УДК 004.056

П. Захарченко

(Республика Беларусь)
Научный руководитель: Л.И. Крошинская, доцент
БИП-Институт правоведения

ИНФОРМАЦИОННАЯ БЕЗОПАСНОСТЬ

Современное развитие информационных технологий, и особенно Internet технологий, привело к возникновению острой необходимости защиты информации, передаваемой в сети открытого доступа. В связи с