А. Герасимец

(Республика Беларусь)

Научный руководитель: И.М. Морозова, к.ф.-м.н., доцент Белорусский государственный аграрный технический университет

ВРЕМЕННЫЕ РЯДЫ С СЕЗОННЫМ ФАКТОРОМ КАК МЕТОД ПРОГНОЗИРОВАНИЯ

Прогноз производственного процесса с применением методов анализа временных рядов основывается на допущении, что все факторы, действовавшие в базовом периоде, и взаимосвязь этих факторов останутся неизменными и в прогнозируемом периоде. Однако на практике такое условие часто нарушается. В большинстве случаев динамический ряд, кроме тренда и случайных отклонений от него, характеризуется ещё сезонными и циклическими составляющими.

Сезонность оказывает очень сильное влияние на точность прогноза, поэтому, приступая к построению прогноза с помощью методов анализа временных рядов, данные необходимо проанализировать на наличие сезонных колебаний.

Исследуя экономико-математическими методами тесноту взаимодействия предприятий интегрируемой структуры на базе ОАО «Оршанский КХП», на одном из этапов работы мы применяем модель Хольта-Уинтерса. Для нее следует рассчитать коэффициент сезонности на основе данных по производству различных видов комбикормов на ОАО «Оршанский комбинат хлебопродуктов».

Рассмотрим *мультипликативные индексы сезонности*. Мультипликативные индексы сезонности используются в случае, когда по мере повышения среднего уровня динамики увеличиваются абсолютные отклонения, вызванные сезонностью.

В общем виде мультипликативные индексы сезонности определяются отношением исходных (эмпирических) уровней ряда динамики y_i к теоретическим (расчетным) уровням y_t выступающим в качестве базы сравнения:

$$S_i = \frac{y_i}{y_t}$$

Именно в результате того, что в приведенной выше формуле измерение сезонных колебаний производится на базе соответствующих теоретических уровней тренда в исчисляемых при этом индивидуальных индексах сезонности влияние основной тенденции развития элиминирует-

ся (устраняется). Поскольку на сезонные колебания могут накладываться случайные отклонения, для их устранения производится усреднение индивидуальных индексов одноименных внутригодовых периодов анализируемого ряда динамики. Поэтому для каждого периода годового цикла определяются обобщенные показатели в виде средних индексов сезонности S:

$$S = \frac{\sum S_i}{n}$$

Рассчитаем прогнозный индекс сезонности по данным (рис. 1).

1. Определим средний уровень товарооборота по месяцам: для января $y_{_{\scriptscriptstyle S}} = \frac{(10455+9946+9064)}{2} = 9821,7$ и так для каждого месяца.

4	A	В	С	D			
1		Производство в тоннах					
2	Месяц	2014	2015	2016			
3	Январь	10455	9946	9064			
4	Февраль	9502	8602	8366			
5	Март	10570	9381	8963			
6	Апрель	9701	9741	9633			
7	Май	7745	8884	9427			
8	Июнь	8062	8497	8080			
9	Июль	8409	9579	7534			
10	Август	10540	9698	8607			
11	Сентябрь	10488	9644	8286			
12	Октябрь	10775	10395	9092			
13	Ноябрь	10696	9740	9724			
14	Декабрь	11229	10710	8501			
15	Σ	120186	116832	107293			

Рисунок 1 – Данные по производству комбикорма

- 2. Определяем общий для всего ряда динамики средний уровень производства у:
- $y_{\text{sl}} = (9821,7+8823,3+9638+9691,7+8685,3+8213+8507+9615+9472,7+ +10087,3+10053,3+10146,7) / 12 = 9396,3$
- 3. Определяем средние индексы сезонности производства по каждому месяцу: $S_{\scriptscriptstyle H} = \frac{9821,7}{9396,3} \times 100 = 104,5$.

4	A	В	С	D	Е	F	G
1		Производство в тоннах			Расчёты		
2	Месяц	2014	2015	2016	Σ за 3 года	Средняя	Индекс Сезонност
3	Январь	10455	9946	9064	29465	9821,7	104,5
4	Февраль	9502	8602	8366	26470	8823,3	93,9
5	Март	10570	9381	8963	28914	9638,0	102,6
6	Апрель	9701	9741	9633	29075	9691,7	103,1
7	Май	7745	8884	9427	26056	8685,3	92,4
8	Июнь	8062	8497	8080	24639	8213,0	87,4
9	Июль	8409	9579	7534	25522	8507,3	90,5
10	Август	10540	9698	8607	28845	9615,0	102,3
11	Сентябрь	10488	9644	8286	28418	9472,7	100,8
12	Октябрь	10775	10395	9092	30262	10087,3	107,4
13	Ноябрь	10696	9740	9724	30160	10053,3	107,0
14	Декабрь	11229	10710	8501	30440	10146,7	108,0
15	Σ	120186	116832	107293	338266	9396,3	100,0

Рисунок 2 – Результаты расчёта индекса сезонности

Полученные результаты (рис. 2) демонстрируют, что сезонные колебания производства комбикормов характеризуются понижением в летний период. А в зимние месяцы мы можем наблюдать увеличение объема производства данной продукции. Рассчитанные, таким образом, средние индексы сезонности следует положить в основу модели, по которой можно осуществлять планирование производства на следующие годы.

УДК 339 18:005

А. Горошко, А. Саватеев

(Республика Беларусь)

Научный руководитель: Е.И. Подашевская, ст. преподаватель Белорусский государственный аграрный технический университет

ЛОГИСТИЧЕСКОЕ РЕШЕНИЕ ОРГАНИЗАЦИИ РАБОТЫ ОБСЛУЖИВАЮЩЕГО ПЕРСОНАЛА РЕСТОРАНА

Для определения оптимальной загрузки графика официантов с целью повышения качества обслуживания при минимизации численности официантов использовать методы экономико-математического моделирования.

Важно правильно распределение людей по графику работы предприятия. Крайне важно, чтобы не было простоев, так как это лишние деньги, что тратит предприятие на заработную плату.