- / С И. Павленко, Э.Б. Алиев, Ю.А. Линник // Вестник ВНИИМЖ. Серия: Механизация, автоматизация и машинные технологии в животноводстве М., 2014. N24(16). C.77-81.
- 11. Линник Ю.О. Експериментальні дослідження процесу переміщення молочно-повітряної суміші в доїльній установці з верхнім молокопроводом/ Ю.О. Линник, В.Ю. Дудін, Е.Б. Алієв // Технічні системи і технології тваринництва: Вісник Харківського національного технічного університету сільського господарства імені Петра Василенка Харків, 2015. Вип. 157. С. 146-152.

УДК 636.087.22

3.В. Ловкис¹, член-корр. НАН Беларуси, д.т.н., профессор, Е.В. Евтушевская¹, Н.А. Прокопьев², к.т.н., доцент 1 РУП «НПЦ НАН Беларуси по продовольствию», 2 БГАТУ, г. Минск, РБ

ИСПОЛЬЗОВАНИЕ ОТХОДОВ КАРТОФЕЛЕКРАХМАЛЬНОГО ПРОИЗВОДСТВА В СОСТАВЕ КОРМОВ

Введение

В картофелеперерабатывающей промышленности, конечным продуктом которой являются картофельные полуфабрикаты или готовые продукты питания, основным сырьем производства является картофель.

В настоящее время промышленная переработка картофеля в целом развивается в двух направлениях: переработка картофеля на крахмал и переработка картофеля на продукты питания [1, 2].

Производство, как крахмала, так и картофелепродуктов осуществляется на технологических линиях, где картофель подвергается многочисленным технологическим операциям. В результате, образуются разнообразные побочные продукты (отходы), которые необходимо утилизировать. В связи с возрастающими темпами производства продуктов питания из картофеля увеличивается и количество отходов [3, 4].

Основная часть

Ежегодно в Республике Беларусь производится около 20 тыс. тонн крахмала, 3 тыс. тонн сухого картофельного пюре, 3 тыс. тонн чипсов, 6 тыс. тонн сухого полуфабриката из картофеля, 500 тонн замороженных картофелепродуктов.

Количество отходов в Республике Беларусь за год составляет: мезги -60-70 тыс. тонн, отходы при производстве сухого картофельного пюре - до 10 тыс. тонн, сточные воды - 100-120 тыс. тонн.

Для всех перечисленных производств, присущ один из основных недостатков — это неполное использование сухих веществ перерабатываемого картофеля и образование отходов, количество которых зависит от вида производимого продукта и промышленной технологии производства и достигает до 60%.

Количество отходов, а также уровень использования их предприятием в значительной степени влияют на себестоимость продукции, что, в свою очередь, требует рационального подхода в вопросах совершенствования технологии переработки сырья и утилизации отходов.

Анализируя литературные данные и существующие технологии получения продуктов питания из картофеля и крахмала, были определены основные технологические операции, при которых образуется основное количество отходов. Это процесс мойки, очистки, доочистки, резки бланшировки.

Условно отходы картофеля могут быть разделены на твердые и жидкие. К твердым отходам относятся: - некондиционный картофель (может составлять до 30% от массы сырья);

- отходы, полученные при доочистке картофеля (достигает 20% к массе сырья);
- отходы, полученные при подсушке, сушке, инспекции, расфасовке и других операциях, которые составляют 2-5%.

К жидким отходам относятся:

- отходы, полученные при очистке, бланшировке, варке и других операциях (достигает 30% к массе сырья). Жидкие отходы содержат 3-5% сухих веществ;

- картофельная мезга, получаемая при переработке на крахмал мелкого и некондиционного картофеля.

В результате проведенного литературного анализа выявлено, что отходы картофелекрахмальных производств используют, как на пищевые, кормовые и технические продукты в комплексе по трем направлениям, так и по каждому направлению в отдельности, но наиболее распространенным является использование отходов на производство кормов. Содержание сухих веществ картофеля и отходов картофелеперерабатывающих производств представлены в таблице 1[5].

Таблица 1 – Распределение сухих веществ картофеля в продуктах и отходах картофелекрахмального производства

Составные части	Содержание в %					
картофеля	в карто- в крахма-		в соковой в		в сухой	
	феле	ле	воде	сырой	мезге	
				мезге	(влажность	
					12%)	
Крахмал	18,5	15,82	0,38	2,30	45,0	
Клетчатка	1,15	~ -)	_	1,15	22,5	
Углеводы растворимые	1,10	_	0,97	0,13	2,5	
Минеральные вещества	1,10	0,09	0,67	0,24	4,7	
Азотистые вещества	2,00		1,76	0,24	4,7	
Жиры	0,15	_	0,13	0,02	0,39	
Прочие вещества	1,10	0,02	0,67	0,41	8,0	
Всего	25,00	15,93	4,58	4,49	88,0	

В настоящее время существуют разнообразные способы переработки картофеля и отходов его переработки в кормовые продукты, такие как мезга, протеиновый концентрат, кормовая мука.

Картофельные отходы скармливают в свежем, силосованном и высушенном виде.

Одним из эффективных способов использования мезги является приготовление сырых кормов. Их готовят смешивание прессованной мезги (влажностью 80%) с неразбавленным картофельным соком. При отсутствии мезгопрессов можно смешивать с картофельным соком мезгу после центробежно-лопастных сит (влажность 90%). Сырой корм подлежит немедленной реализации, так как является скоропортящимся продуктом [5].

Содержание в картофельной мезге значительного количества крахмала, высокая степень усвояемости клетчатки делает мезгу ценным кормом. Один из способов консервирования картофельной мезги — силосование. Мезга хорошо силосуется при влажности 70-75%.

Были проведены исследования и установлено, что картофельная мезга, как непрессованная, так и прессованная, хорошо силосуется; прибавление к ней картофельного сока улучшает качество силоса, та как в нем возрастает содержание белков, сахара и зольных веществ. При силосовании мезги с картофельным соком целесообразно добавлять мякину и соломенную резку, что бы использовать этот малоценный корм.

В силосованной мезге сухого вещества -24,1%, 0,25-0,27 корм. ед., протеина -1,2%, жира -0,1%, клетчатки -2,2%, БЭВ -20,2%, золы -0,4%. Переваримость органического вещества -78%.

Исследована возможность хранения сульфитированного картофельного сока. Установлено, что он хорошо храниться более 100 дней даже при температуре около 20 °C при содержании сернистого ангидрида в количестве 0,5% по массе продукта.

Целесообразно производить смешивание данной ферментированной белковой суспензии с отпрессованной мезгой.

При смешивании отпрессованной до влажности 75 % мезги с белковой суспензией получают хороший молочнокислый корм.[6]

Сейчас очень широко используется технология биоконверсии отходов, которая предназначена для переработки сырых компонентов, не используемых в традиционном кормопроизводстве, в высококачественные углеводно-белковые кормовые добавки (УБК) и комбикорма.

Кормовая добавка УБК, используется как основной компонент при производстве комбикормов в соотношении 1:1, как добавка к грубым растительным кормам, при производстве простых кормовых смесей с измельченным фуражным зерном, отрубями, зерноотходами и др., с нормой ввода до 25-65% [7].

Наиболее удобным видом корма, являются высушенные корма, которые могут быть использованы в качестве основного корма, а

также в качестве ценного компонента в комбикормах при условии обязательного добавления в пищу белков и минеральных веществ.

Питательная ценность картофельных кормов на основании литературных источников приведена в таблице 2.

В таблице 3 приведены справочные данные потреблению картофельных кормов для сельскохозяйственных животных.

Таблица 2 – Питательная ценность 1 кг картофельных кормов из картофельных отходов

Наименование	Сухие	Содержа-	Сырой	Перева-	Угле-	Клет
корма	веще-	ние кормо-	проте-	римый	воды,	чат-
	ства, г	вых единиц	ин, г	протеин,	Г	ка, г
				Γ		
Карт. сок	50	0,06	0,25	16	9	8
Мезга сырая (90%)	90	0,11	5	2	45	7
Мезга частично	170	0,19	9,4	3,8	85	24
обезвожен.						
Мезга сухая	860	0,95	46	20	430	130
Корм сырой	70	0,08	12,6	7,9	35	6
Корм запаренный	60	0,07	10	6,8	29	5

Таблица 3 – Суточные нормы потребления картофельных кормов для животных, кг

Корм	Животные			
	Коровы	Молодняк	Молодняк	Свино-
	дойные*	от 6 мес.	старше 1	матки и
		до 1 года	года	откорм**
Картофельный сок	20-25	7-12	20-25	3-5
Мезга сырая	18-20	7-12	18-20	6-8
Мезга частично обезвоженная	10-12	4-6	8-10	4-6
Мезга сухая	2-2,5	1-1,5	1,5-2,0	0,3-0,5
Корм сырой	20-25	7-12	20-25	6-8
Корм запаренный	20-35	10-15	20-25	6-8
Корм белковый (сброженный)	20-30	10-15	20-25	6-8
Сгущенный белок	8-10	4-5	6-8	3-4
Уваренный фильтрат I	4-5	1-1,5	1-1,5	0,5-0,6
Уваренный фильтрат II	8-4	0,5-0,7	0,7-1,0	0,3-0,4
Углеводно-белковый	4-5	1,-1,5	1,0-1,5	0,5-0,6
гидролизат I (30%)				
Углеводно-белковый	8-4	0,5-0,7	0,7-1,0	0,8-0,4
гидролизат II (50%)				
Корм белковый (сухой)	2,0-2,5	1-1,5	1,5-2,0	0,3-0,5

* - при переработке молока на масло норму мезги снижают до 12 кг/сут. **- свиньям все виды кормов скармливают в запаренном виде [8].

Заключение

Анализируя состояние картофелеперерабатывающей отрасли, было определено, что при производстве продуктов питания из картофеля количество образующихся отходов достигает до 60%, причем качественный состав отходов разнообразен. По своему агрегатному состоянию отходы разделяются на жидкие и твердые. В связи с этим, связаны трудности с их утилизацией.

В результате проведенных исследований было установлено, что одним из перспективных направлений переработки отходов является получение на их основе продуктов утилизации в сухом виде.

На основании мирового опыта определена область применения отходов из картофеля и конечный продукт, получаемый при переработке отходов.

Установлено, что одним из эффективных способов использования и хранения отходов, является производство высушенного корма. Сухая мезга — это углеводный корм со сроком хранения более одного года. Килограмм сухой мезги содержит около 1 кормовой единицы. В ней низкое содержание белка, минеральных веществ и витаминов. Поэтому при скармливании сухой мезги необходимо добавлять минеральные вещества и витамины, а также белок.

На основании проведенных ранее исследованиях, с учетом количеств образующихся отходов на картофелеперерабатывающих предприятиях Республики Беларусь, были изучены нормы потребления картофельных кормов для таких сельскохозяйственных животных, как КРС и свиньи, и установлено применение сухих отходов в качестве компонента для производства комбикормов.

Список использованной литературы

- 1. Гусынина Е. Т., Ковганко Р. Л. / Новые виды продуктов питания из картофеля. В кн.: Проблемы картофеля./- Минск, 1974, с. 93-100.
- 2. Трегубов Н. Н., Милютин А. А. / Технология крахмала / Пищевая промышленность, 1965.-410 с.

- 3. Юрченко А. Е. и др./ Вторичные материальные ресурсы пищевой промышленности. Справочник/ Москва «Экономика» 1984 г.
- 4. Жалейко Г. А. и др./ Переработка отходов/ Белорусский научно-исследовательский центр «Экология» Мн. 1991 г.
- 5. Лаврова Ю.А. / Экологические проблемы на пищевых производствах / реферат.
- 6. Воротеницкая С. Л., Суменков Б. И., Шахов А. Б. / Комплексное использование сырья и отходов в пищевой промышленности/ Консервная промышленность.-1974.- №10.- С. 5-8
- 7. Денщиков М. Т. / Отходы пищевой промышленности и их использование/- М. Пищепромиздат, 1963 г.
- 8. Купрейчик В. М. /Использование побочных продуктов переработки сельскохозяйственного сырья в кормлении молодняка свиней/ Авторефера, Гродно, 2008 г.

УДК 636.2.087.72.37

Н.В. Телицына¹, научный сотрудник, Г.З. Гуцева², старший научный сотрудник

 1 РУП «Институт рыбного хозяйства», г. Минск, РБ, 2 ГНУ «Институт радиобиологии НАН Беларуси», г. Гомель, РБ

ПУТИ СНИЖЕНИЯ ПОСТУПЛЕНИЯ ЦЕЗИЯ-137 В МЫШЕЧНУЮ ТКАНЬ ЛОШАДЕЙ В УСЛОВИЯХ РАДИОАКТИВНОГО ЗАГРЯЗНЕНИЯ ТЕРРИТОРИИ

Введение

В Республике Беларусь конина традиционно используется в пищевых целях. Оршанский мясоконсервный комбинат, Слонимский мясокомбинат, Калинковичский мясокомбинат и многие другие используют конину в качестве мясосырья и выпускают колбасы «Кубанская б/с», «Степная», консервы «Конина тушеная», а также детское питание «Пюре из говядины с кониной» и другие.

Роль мяса (в том числе и конины) в радиоактивном загрязнении рациона человека весьма существенная. Поэтому выяснение аспектов перехода радионуклидов из рациона в мясо представляется особо важным.