УДК 631.333 -189.2

А.А. Жешко, канд. техн. наук, доцент,

РУП «НПЦ НАН Беларуси по механизации сельского хозяйства», г. Минск

ЭКОЛОГО-ЭКОНОМИЧЕСКИЕ АСПЕКТЫ РАВНОМЕРНОГО ВНЕСЕНИЯ МИНЕРАЛЬНЫХ УДОБРЕНИЙ

Ключевые слова: минеральные удобрения, штанговые рабочие органы, равномерность распределения, экология, структура потерь.

Key words: mineral fertilizers, rod working bodies, uniformity of distribution, ecology, loss structure.

Аннотация. В статье рассмотрены эколого-экономические аспекты равномерного внесения минеральных удобрений.

Annotation. The article considers the ecological and economic aspects of the uniform application of mineral fertilizers.

Экология и экономика являются взаимосвязанными составляющими применительно к вопросам внесения средств химизации земледелия. Как видно из рисунка 1 некачественное внесение удобрений приводит к негативному воздействию на окружающую среду, что в свою очередь является причиной загрязнения грунтовых вод и накопления нитратов в урожае.

Рисунок 1. Структура потерь удобрений при некачественном их внесении

Избыточное применение фосфорных удобрений приводит к накоплению в почве малоподвижных токсичных элементов. В потерь фосфорных результате удобрений при транспортировке (34 %),вымывания фосфора (21 %) и выпадения его из круговорота в сельскохозяйственном производстве оставшиеся 45 % поступлений приводят к насыщению водоёмов биогенными элементами [1].

Отклонение от оптимальных сроков внесения *азотных удобрений* приводит к тому, что куль-

турные растения либо недополучают необходимое количество азота, либо получают его в избытке. В первом случае неиспользуемые азотные соеди-

нения накапливаются в почве. Во втором случае накопление происходит в растениях, что приводит к ухудшению качества продукции.

Калийные удобрения могут содержать в своем составе радиоактивный изотоп калия и хлор, что негативно сказывается на развитии культурных растений при внесении в больших дозах [2].

Согласно проведенному в работе [3] анализу, вынос азотных удобрений находится в диапазоне 66–130 кг/га, улетучивание 17-26 кг/га, потери азота от выщелачивания 7-10.4 кг/га, потери в результате эрозии 1-2 кг/га.

Неравномерность распределения удобрений по поверхности поля привит к избыточному их накоплению на одном элементарном участке, что является причиной полегания растений, в то время как на участке с меньшим содержанием средств химизации растения недополучают питательные элементы в необходимом количестве, вследствие чего плохо развиваются. В совокупности неравномерность распределения удобрений приводит к негативному развитию пестроты плодородия почвы.

Отступление от оптимальных *сроков внесения*, избыточность доз и неравномерное распределение удобрений по поверхности поля приводит к накоплению трудноусвояемых для растений соединений в почве. Растениями усваивается в среднем 40–50 % азота, 10–20 % фосфора и 30–40 % калия.

Основным способом снижения экологической нагрузки на окружающую среду является качественное распределение удобрений по поверхности поля, что оценивается коэффициентом вариации. Математически доказано [4, 5, 6], что со значением коэффициента вариации связана урожайность сельскохозяйственных культур, что можно записать как

где \bar{y} – средняя урожайность, кг/га;

 c_0, c_1, c_2 — коэффициенты уравнения зависимости урожайности от дозы вносимых удобрений;

 μ – средняя доза удобрений, кг/га;

 σ – среднее квадратическое отклонение дозы удобрений, кг/га;

 \mathbb{V} – коэффициент вариации.

Таким образом, повышая качество внесения удобрений, что может быть достигнуто за счет штанговых распределяющих рабочих органов, решаются не только экологические, но также экономические вопросы.

Список использованной литературы

1. Гречишкина, Ю.И. Экологические аспекты применения удобрений в современном земледелии / Ю.И. Гречишкина [и др.] // Вестник АПК

Ставрополья. Ежеквартальный научно-практический журнал. — 2012. — N2(7). — C. 112-114.

- 2. Узаков, З. З. Экологические проблемы применения минеральных удобрений / З.З. Узаков, С. Халикова, А. Эгамбердиев // Символ науки. Международный научный журнал. 2018. –№4. С. 35 37.
- 3. 28. Ломонос, О.Л. Динамика применения удобрений и потери элементов питания на сельскохозяйственных землях Беларуси / О.Л. Ломонос, М.М. Ломонос // Журнал Белорусского государственного университета. Экология. 2023. №2: С. 96–104.
- 4. Личман, Г.И. Оценка влияния качества внесения удобрений на урожайность сельскохозяйственных культур / Г.И. Личман, А.А. Личман. Сельскохозяйственные машины и технологии. 2017. №5. С. 16 21.
- 5. Степук, Л.Я. Стратегия механизации внесения удобрений / Л.Я. Степук, И.В. Румянцев, Н.М. Марченко, Г.И. Личман // Механизация, энергетика и автоматизация. Известия Академии аграрных наук Республики Беларусь. 1999. №1. 85 88.
- 6. Каплан, И.Г. Качество внесения удобрений Миннеаполис, США. 2004.

УДК 635:631.52

Г.М. Брескина, канд. с.-х. наук, «Курский федеральный аграрный научный центр», г. Курск

ВЛИЯНИЕ МИКРОБИОЛОГИЧЕСКИХ ПРЕПАРАТОВ НА ПОСЕВНЫЕ КАЧЕСТВА БОБОВЫХ КУЛЬТУР

Ключевые слова: микробиологические препараты, люпин белый, кормовые бобы, соя, энергия прорастания, лабораторная всхожесть.

Key words: microbiological preparations, white lupine, fodder beans, soybean, germination energy, laboratory germination.

Аннотация. В статье представлены экспериментальные данные по влиянию микробиологических препаратов, используемых в качестве инокулянтов, на энергию прорастания и лабораторную всхожесть семян бобовых культур. Применяемые препарата положительно сказались на энергии прорастания семян, однако лабораторная всхожесть не отличалась от контрольного варианта (дистиллированная вода). Наибольший положительный эффект в увеличении энергии прорастания проявился на семенах сои, где разница по сравнению с контролем составила 27%.